MISSISSIPPI ARCHAEOLOGY

Published semiannually by the
Mississippi Department of Archives and History
In cooperation with the
Mississippi Archaeological Association

EDITOR
Patricia Galloway, Department of Archives and History

EDITORIAL BOARD
Jay K. Johnson, University of Mississippi
Tristram R. Kidder, Tulane University
George Sabo, University of Arkansas
Susan Scott, Hattiesburg, Mississippi
Gregory Waselkov, University of South Alabama

MISSISSIPPI ARCHAEOLOGY

Volume 31 Summer, 1996 Number 1

CONTENTS

Historic Period Chickasaw Indians: Chronology and Settlement Patterns David Morgan 1
Batesville Mounds: Recent Investigations at a Middle Woodland Site Mimi Holland-Lilly 40
Preliminary Impressions from the Batesville Mounds Group Janet Ford 56
Review: Snapshots of the Past Melissa H. Reams 68
Review: Exploring Ancient America: An Archaeological Guide Samuel O. Brookes 70
Review: How to do Archaeology the Right Way Edmond Boudreaux, Jr. 72
Review: Native Land: Mississippi 1540-1798 Jo Miles-Seely 73
Review: The Creek War of 1813 and 1814 Kenneth H. Carleton 75
Review: Cahokia's Countryside: Household Archaeology, Settlement Patterns, and Social Power John H. Blitz 78
Review: Beyond Subsistence: Plains Archaeology and the Postprocessual Critique Timothy R. Pauketat 80
Review: Choctaw Genesis 1500-1700 Gregory A. Waselkov 85
Historic Period Chickasaw Indians: Chronology and Settlement Patterns

David W. Morgan

Chronological change in northeast Mississippi has long been associated with a distinction between live and fossil shell tempered pottery. I suggest that for the Historic Period this distinction is more geographical than technological. A seriation of Chickasaw sites shows that the changing frequencies of sand and shell tempered pottery used in the Historic Period seem to be time-sensitive. I use the seriation as a time framework within which I examine Historic Period settlement patterns and compare them with an existing model of Protohistoric Period settlement. The Historic Period settlement patterns changed in reaction to interaction with Europeans, but, in general, the settlement model seems identical to that supposed to exist in the Protohistoric Period.

Introduction

The Chickasaw Indians played an integral role in the struggle between the French, English, and Americans for control of the Southeast during the Historic Period (A.D. 1670 to Indian Removal). The eighteenth-century Chickasaw were fairly well documented because of their importance, so we have a good understanding of where and how they lived. In this paper I attempt to use the wealth of historical documentation to develop a better chronology of Chickasaw sites than currently exists. By ordering Chickasaw sites chronologically, settlement patterns within the Historic Period can be compared. These Historic Period patterns can also be compared with earlier settlement traditions as modeled by Jay Johnson and John Sparks (1986) for Protohistoric Period Chickasaw.

Background

It is known archaeologically that Lee County was occupied sparsely during the Mississippi Period (roughly between A.D. 1000 and A.D. 1450). Neighboring counties, though, were inhabited, and it is possible that the Lee County region acted as a buffer zone between neighboring chiefdoms.

Lee County was more densely occupied after the Mississippi Period. The county was inhabited during the eighteenth and nineteenth centuries by the Chickasaw Indians, but the settlement pattern associated with
them is dramatically different from that of Mississippian peoples. Missis-
ippi Period settlements, as they are recognized elsewhere, are generally
located on floodplain terraces overlooking major stream or river drain-
gages (Smith 1978). Instead of living on the terraces of large floodplains of
major water corridors, the Historic Period Chickasaw settled only the
upland ridges and bluffs overlooking tributary streams in and near mod-
ern day Tupelo, Mississippi (Johnson et al. 1991:2; Johnson 1991:493; At-
kinson 1987b:33; Johnson and Sparks 1986:72; Stubbs 1983:36, 41; Swa-
ton 1935:377). The reasons why the Chickasaw settled in such a distinct-
ive manner are debatable. Interpretations hinge on two initial questions:
1) when did the Chickasaw enter the vicinity of Lee County? and 2) how
recent is the upland ridge settlement tradition?

Some scholars have argued that this settlement pattern was a continu-
ation of a prehistoric, pre-Hernando de Soto, tradition (Johnson et al.
1986:86-87). James Atkinson has offered a different point of view. He
stated that the middle sixteenth-century Chickasaw settlement pattern
was similar to that of other late Mississippian societies. Settlements were
oriented around floodplains and first terraces but had also come to in-
clude some upland prairie ridge locations like those typically associated
with eighteenth-century Chickasaw settlements (Atkinson 1987a:4). Solis
and Walling's (1982) research at the Yarborough site supports this idea.
The Yarborough site dates to around the time of the Soto entrada (Sorrels
Phase), and it is located on a natural levee overlooking Tibbee Creek
investigation of the Tibbee Creek drainage indicates that farmsteads of
the Late Mississippian period [i.e., other Sorrels Phase sites] are densely
distributed.” Atkinson’s model is also bolstered by Richard Marshall’s
investigations in the vicinity of Lyon's Bluff. River bottom sites in the
Lyon’s Bluff area had both typical Mississippian Period pottery types
(Tibbee Creek Phase and Lyon’s Bluff Phase) and pottery dating to the
Sorrels Phase (Marshall 1986:86). Therefore, if this area was the six-
teenth-century location of the Chickasaw as Hudson et al. (1990:193-199)
suggest, it seems that they were still dwelling in what might be charac-
terized as a “Mississippian” settlement pattern. That is, the sixteenth-
century Chickasaw settlement repertoire consisted of a few compact, organ-
ized villages and a large number of supporting farmsteads located in
both floodplain and upland localities.

There are no existing manuscripts that describe colonists’ contact with
the Chickasaw between the sixteenth century and the early eighteenth
century, so nothing certain is known about the Chickasaw movements
and settlement practices during this time from direct observation. Ar-
chaeological investigation, however, has provided a basis for explaining
what transpired in the intervening 160 years. Atkinson offered a recon-
struction suggesting that the area encompassing Chuquotonchee and
Houlka Creeks was the location of the Chickasaw in A.D. 1540: the
“Chuquotonchee Creek phase” (Atkinson 1986:15a-17) (see Figure 1). He
gave the Tibbee Creek area to the south, known as the Rolling Hills/Plan-
tation Homes Settlement, as the location for the Chackchiuma at the time.
of European contact (see Atkinson 1987a:64-67; Atkinson 1979:65-69), in contrast to the later hypotheses of Hudson and his colleagues (1990). The locale north of the Chuquotonchee Phase area along Chiwapa, Tubbubba, and Tallabillena Creeks was occupied by the "Alibamu" during the "Early and Middle Chiwapa Creek Phases." The early phase was given as the time period between circa A.D. 1500 and A.D. 1550, and the middle phase was supposed to represent the time between circa A.D. 1550 and A.D. 1600 (Atkinson 1986:5-8, 15a-18). The "Alibamu," hypothesized Atkinson, may have migrated to Alabama after the Middle Chiwapa Creek Phase. These people, he stated, "were later forced to abandon the Tombigbee River Valley by either the possible Choctaw-affiliated Chackchiuma, the Choctaw themselves, or both" (Atkinson 1986:18). He based this on the documented arrival of a tribe with the same name in central Alabama in 1686 who are reported to have moved in response to the aggressiveness of the "Chata." Atkinson then thought that after the "Alibamu" vacated the region the Chickasaw moved north from the Chuquotonchee Phase area and occupied Chiwapa Creek, the Old Fields, and other northern Lee County localities during the Late Chiwapa Creek Phase (circa A.D. 1600 to A.D. 1750) (Atkinson 1986:6, 9-18).

Based on a re-examination of the data collected from prairie drainages north of Tibbee Creek, Atkinson (1987a) modified his 1986 reconstruction (see Figure 2). The "usually thin and widely separated occurrence of individual house sites recorded," he stated, "does not coincide with the Soto chroniclers' descriptions of the Chickasaw settlement area" (Atkinson 1987a:63). In Atkinson's revised scenario, these upland prairie sites in the area previously designated Chuquotonchee Phase largely postdate A.D. 1540. Atkinson implied that they represent the location of the Chickasaw sometime between A.D. 1540 and A.D. 1700. He suggested that the group referred to in the Soto chronicles as the "Alibamo" and "Alimamu" was located in 1540 on the south side of the Houilka Creek drainage, the one locality in this area of dispersed sites which contained a large number of settlements in a concentrated area. The hypothesized location of the Chackchiuma near Starkville was unmodified (Atkinson 1987a:62-63, 67).

In summary, Atkinson has offered two suggestions explaining the movements of Indian peoples in northeast Mississippi between the first European contact and the eighteenth century. Unfortunately, there is much ambiguity in the data. The ethnohistorical documents are not as specific as we would like, and an interpretation of area culture history is based largely on an imprecise pottery chronology. The issues are still unresolved. Most of Atkinson's original phase names were changed implicitly by his revisions in 1987. The cultural and chronological identity suggested for the Early and Middle Chiwapa Creek Phase sites changed, as did the date of occupation stipulated for the Chuquotonchee Creek Phase. Atkinson now interprets the Late Chiwapa Creek Phase as an earlier representation of the eighteenth-century Chickasaw occupations around the Tupelo vicinity during the Historic Period. He also now believes the Chuquotonchee Phase dates from sometime just after European contact in A.D. 1540 to the time when the Chickasaw occupied the Chiwapa Creek Phase area (Atkinson, personal communication 1995).

To recapitulate, there are several existing hypotheses about the location of various groups of Indians during the Protohistoric and Historic Periods. What seems certain, though, is that Sorrells Phase sites around Line and Tibbee Creek are found in both the uplands and the bottomlands in both compact settlements and small dispersed farmsteads. Yet, just to the north, still in Clay County, it is generally claimed that the sites are primarily in level areas located "on the end of upland ridge spurs.
bordered by drainages” (Atkinson 1986:24). This pattern of isolated upland sites looks noticeably different from the southern pattern, with one exception. An area south of Houka Creek “seems to have contained an exceptionally large number of houses concentrated in an area about three miles long” that also date to the Sorrels Phase (Atkinson 1987a:67-68). The presence of upland sites and a concentration of houses seems to mirror the settlement pattern for the Tibbee Creek locality: a compact village with numerous supporting farmsteads.

I believe part of the confusion in isolating a particular settlement pattern stems from efforts to compare settlements that overlap temporally. In other words, the area south of Houka Creek may have been the focus of the Alistami in 1540, and the same region and the other creeks to the east were probably occupied by the Chickasaw sometime between their 1540 Lyon’s Bluff settlements and their eighteenth-century Lee County settlements. Some of the upland and bottomland sites date to the sixteenth century, and some date to the seventeenth century. Determining which is which has been notoriously difficult, and the questions of when and why people began settling exclusively on upland ridges are still unresolved.

The Protohistoric Period Settlement Model

A model explaining “Protohistoric Chickasaw” settlement patterns was produced by Jay K. Johnson and John T. Sparks in 1986 from data collected in Clay County, along Line and Chuchatonchee creeks. It represents the first inquiry into this aspect of Chickasaw society, and it was developed prior to the publication of evidence suggesting that Soto encountered the Chickasaw in the vicinity of Lyon’s Bluff. Johnson and Sparks (1986:76) believed the Clay County “Protohistoric” sites were located exclusively in the uplands, and they felt that this settlement pattern had its origins in the prehistoric era, based on the assumption that the dispersed sites “represent a decentralization and simplification of the Mississippian pattern...[that] was already in place” prior to the Soto entrada. Although they identify the Clay County pattern of sites as “Protohistoric,” they make the puzzling claim that the sites are actually “prehistoric” based on temper types and the absence of trade goods (Johnson and Sparks 1986:75). This claim contributes a confusing aspect to their model. I will treat the Protohistoric Period as the time span between contact with Soto in A.D. 1540 and the establishment of Charleston in A.D. 1670. Fixing such boundaries is, of course, arbitrary. A.D. 1540 serves as the prehistoric/protohistoric boundary, because it marks the first entrance of Europeans into the interior of the Southeast. After their contact with Soto, the Chickasaw were not directly involved with Europeans on a regular basis until around the middle to late seventeenth century, when they became active players in the Europeans’ struggle to control the Southeast. European and Indian interaction through trade escalated sharply after the establishment of Charleston in A.D. 1670, becoming more frequent and prolonged, so this date serves as an adequate early boundary for the Historic Period.

Johnson and Sparks identified “Protohistoric” sites using pottery attributes, particularly the presence of live shell temper and rim modes such as a triangular notched fillet below the rim. They posited that these sites are overwhelmingly associated with upland topography, and they demonstrated a correlation between these sites and stream size, stream bottom soil-type, and upland thin soils. Johnson and Sparks (1986:68) suggested that the exclusive use of upland ridges signified a change from intensive agriculture to a greater reliance on deer hunting, since the upland ridge settlements would be “strategically located in terms of optimal year round access to major deer habitat.” At the same time the settlements’ proximity to streams with coarse bottom soils indicated that agriculture remained an important part of Chickasaw subsistence (Johnson and Sparks 1986:72). Johnson and Sparks (1986:74) also noted that the Tupelo area—the heartland of the Historic Period Chickasaw—has all of the environmental and physiographic features that characterize their model, making “it is easy to see why Tupelo became the center of Chickasaw settlement.”

This model may not be totally accurate. Johnson and Sparks established contemporaneity between sites on the basis of pottery tempering material and a few rim modes (J. Johnson, personal communication 1994). The presence of live mussel shell and fossil shell as tempering agents has been used as a relative chronological marker for Mississippi Period and Historic Period Chickasaw pottery, respectively. This is a common “rule-of-thumb” for relative dating in the Tupelo region. However, there is room for error in employing this criterion:

...unfortunately, there is presently no definite proof that fossil shell tempering on a large scale dates entirely to the 17th century and afterwards. So far as is known, no European trade goods have ever been found in association with exclusive live shell tempered sherd assemblages... but their scarcity prior to the late 17th century when direct trade began could account for this (Atkinson 1986:17).

Some of the sites in Clay County are probably seventeenth-century Chickasaw, but Johnson and Sparks may also have included earlier Sorrells Phase or later eighteenth-century sites in their analysis because of the potential inaccuracy of temper as a chronological marker.

Johnson and Sparks used the data collected by Connaway and Brookes in their 1979 survey of Clay County and the data from a Soil
Conservation Survey of Line Creek to develop and test their settlement model. Using the Line Creek survey data, they identified the aforementioned set of environmental and physiographic features that characterized "Protohistoric" sites. They then tested their results by comparing their Line Creek model with data from Chuquatonchee Creek. They found only 16 "prehistoric" sites along Chuquatonchee Creek, not the 70 that their Line Creek model predicted. Seven of the 16 sites had pottery with shell temper, but only three of the seven sites with shell temper were in the uplands, contrary to Johnson and Sparks' expectations. Of the three upland sites, only one had a recognizable "Protohistoric" rim mode (Johnson and Sparks 1986:69).

Temporal labels aside, the analysis indicated that sites with shell temper were located in both the creek bottoms and the uplands. Diagnostic rim modes were too scarce to determine when six of these seven sites were occupied, and temper alone was unreliable; the sites may be contemporaneous. Finding only one upland site with a diagnostic sherds neither validates nor invalidates the model, nor does it preclude the possibility that there may be some bottomland settlements during the Protohistoric Period, as there were during the earlier Sorrells Phase around Tibbee Creek. These Protohistoric Period bottomland sites may have gone unidentified because diagnostic rims were absent or the pottery contained live shell temper instead of the expected fossil shell temper. Despite the possibility that some of the Protohistoric sites may be in the bottomlands, the fact that the identified Protohistoric rim modes are consistently found only on upland sites has led Johnson to contend that the upland settlement pattern represents an abrupt settlement change and is a Protohistoric phenomenon (J. Johnson, personal communication 1994).

Since the 1986 hypothesis, Johnson has used geographic information systems analytical techniques to re-examine this model. He said that "ceramics indicate that these sites were occupied only during very late prehistoric and early historic times," and his re-examination corroborated the earlier hypotheses about the correlation between upland Protohistoric sites, shallow soils, and tributary streams (Johnson 1991:492-493).

Johnson and his colleagues later offered another report analyzing Protohistoric settlement patterns. The report was based on the analysis of surface collections and limited test excavations, and it also strengthened Johnson and Sparks' original model. They concluded that "the eighteenth-century Chickasaw settlement around present day Tupelo, Mississippi fits the Protohistoric pattern almost exactly" (Johnson et al. 1991:65). Both 1991 studies again offered deer hunting as an explanation for the assumed abrupt shift to the uplands.

There are still many questions surrounding this change, particularly concerning timing and population movements. We know where the Chickasaw were during the eighteenth century and how their settlements appeared, and we are fairly certain about where the Chickasaw were located when they met Soto and his troops; however, we are uncertain of when, where, and why the eighteenth-century settlement pattern originated. Where the other ethnic groups described by the Soto chroniclers were located in relation to the Chickasaw is also unresolved, and the precise areas the Chickasaw and these other groups occupied prior to the eighteenth century is unknown. It is generally believed that the Chickasaw were moving north from the Lyon's Bluff and Tibbee Creek/Line Creek vicinity toward modern Tupelo during the seventeenth century (Atkinson 1987b:33; Johnson and Sparks 1986), and the settlement pattern modeled by Johnson and his colleagues for this time period and geographic area is supposed to resemble the Historic Period settlement pattern. Although there has been considerable research conducted in Lee and neighboring counties, the historically and archaeologically documented homeland of the historic Chickasaw, the suggested similarity in settlement patterns has not yet been thoroughly tested.

Objectives

The purpose of this paper is to assess the claim that the Protohistoric and Historic Chickasaw settlement practices are the same. To do so, I first use a seriation technique to create a relative chronological order among a sample of Historic Period sites, following the work of Rafferty (1992). This degree of temporal control is necessary to characterize Historic Period settlement patterns (see Stubbs 1983:42), since they were likely changing in response to interaction with Europeans. It is expected that settlement preferences were altered in reaction to the continual threat of hostilities, depopulation because of warfare and disease, deerskin trade, incorporation of the horse, and other factors. Once the Historic Period settlement patterns are characterized, I then compare them with those hypothesized by Johnson and Sparks (1986) for the Protohistoric Period.

Historic Period Chickasaw Sites: Refining the Chronology

The Sample

The sites used in my analysis were drawn from an archaeological survey of Lee County, Mississippi, conducted by John D. Stubbs (1983) from June 1981 through June 1983. Stubbs selected his survey areas by means of a stratified random sample of all of Lee County excepting ten square miles in and around Tupelo. By the completion of the project, Stubbs had entirely surveyed 69 quarter-section quadrats and had partially surveyed 26 quarter-section quadrats along major creek drainages and their tribu-
taries. He identified 89 sites encountered during the survey as Historic Period Chickasaw.

A Brief Overview of Seriation

Seriation is a relative dating technique. It is based on the idea that similar artifacts are of similar ages. Seriation places assemblages of artifacts into a serial order based on perceived similarity relative to the other objects in a given sample. Seriation is an old archaeological technique that was first developed in the early nineteenth century by Christian J. Thomsen, a Danish scholar (Trigger 1989:73-81). Thomsen's pioneering technique was soon elaborated by archaeologists like John Evans, General Pitt-Rivers, and Oscar Montelius, as they labored to create artifact typologies (Renfrew and Bahn 1991:23).

Another early archaeologist who helped develop seriation was Flinders Petrie (1899). Petrie developed an approach known as "occurrence" seriation, which depends on the presence or absence of artifact-types in closed contexts. Petrie used this technique to compare the contents of predynastic Egyptian graves. In this case, similar ages were inferred for graves which had the greatest number of artifact types in common. George Reisner improved on Petrie's techniques by combining them with the practice of recording stratigraphic sections (Trigger 1989:197).

Frequency seriation focuses not on the presence/absence of artifact types but rather on the changing proportions of artifact types between assemblages. This method assumes that artifact styles, analogous to modern clothing styles, increase, peak, and then decline in popularity. This popularity trend takes the shape of a "battleship curve" when displayed graphically. This seriation technique was established by Alfred L. Kroeber (1916), who used it with pottery assemblages to date several Zuñi Indian sites. Frequency seriation was elaborated later by James Ford (1962; 1938), Philip Phillips and colleagues (1951), and many other Americanist archaeologists.

Since the pioneering work of these scholars, seriation has proved an effective means of ordering artifacts chronologically. When seriation is properly employed, its results "have been uniformly reliable, being frequently confirmed by stratigraphy and various means of absolute dating" (Willey and Sabloff 1993:109).

Seriation has a long, successful history within American archaeology (e.g., Rouse 1939, Ford 1938, 1936; Spier 1917; Kroeber 1916). One example is very relevant here: Philip Phillips, James Ford, and James Griffin's (1951) survey of the Lower Mississippi Alluvial Valley in the 1940s. They made surface collections and some test excavations at a total of 383 sites, yielding a collection of 346,099 pot sherds (Phillips et al. 1951:219). These sherds were classified and chronologically ordered according to the frequency seriation method. Phillips and his colleagues' conclusions were corroborated in part by their excavations, and the results have, by and large, stood the test of time.

Seriation Criteria

Since diagnostic European artifacts in good contexts are relatively rare, and since there are no known aboriginal artifacts that serve as specific time markers, I could not date the sites in the sample by the presence/absence of artifacts alone. I relied on comparisons of pottery as the basis for a frequency seriation. Pottery is a ubiquitous indigenous artifact at these sites, and researchers in this area of northeast Mississippi depend on pottery classifications to yield relative dates. For instance, in his classification of Chickasaw material culture in 1982, Stubbs (1982a:50) declared that "it became clear that the pottery, because of its abundance, would be the best indicator of chronological, cultural, and spatial differences between sites."

The use of particular types of temper is considered a chronologically significant attribute of Chickasaw pottery. A common distinction archaeologists have made is between the use of fossil and live shell temper. Janet Rafferty of Mississippi State University has been working with Stubbs' survey collections, and she indicated that one of the temporally significant variations may be live shell tempering (J. Rafferty, personal communication 1993; Rafferty 1992; see also Stubbs 1983:42). However, Stubbs (1982a:51) also suspected that the use of sand temper was a chronological marker and that the Chickasaw's sand tempered pottery was identifiably different from earlier pottery traditions. Atkinson (1979) and Keith Baca (personal communication 1993) have both indicated that the sand tempered pottery in the Starkville area has distinctly different textures that may correspond to time, a hypothesis that is strengthened by Ashley Metcalf's comparison of Protohistoric Middle Woodland, and late Gulf Formational Period sand tempered pottery in northeast Mississippi (Metcalf 1992).

Based on these researchers' conclusions, I assume that percentages of pottery temper from sites in my sample would vary with time. I removed all sites with less than 50 pottery sherds from Stubbs' survey of 89 Chickasaw sites, since I believe assemblages with less pottery would be unrepresentative. This left 31 sites as my initial sample. Stubbs (1983) classified the pottery from the Historic Period Chickasaw sites into type-varieties, from which I calculated percentage frequencies for use in the seriation.

Assumptions about the Seriation

As noted earlier, seriation has been demonstrated to be a successful relative dating technique when it is employed properly. The data I use
are not from closed contexts, so employing seriation properly entails making several assumptions. My basic assumptions are that the kind of pottery being made, particularly regarding the type of tempering agents being used, changed over time; and the more similar the pottery is between sites, the more closely those sites are related temporally.

Since the data come from surface collections, I had to make the following additional assumptions:

1. variation in percentages of temper types corresponds to time; it occurs in a predictable fashion that may be visually represented as a unimodal curve;
2. seriated assemblages are evenly distributed through time; that is, it is assumed that the assemblages are representative of the whole time continuum and are not clustered around just one part;
3. seriated assemblages do not overlap temporally, meaning that one is not attempting to create a temporal sequence among contemporaneous sites;
4. no cultural or stratigraphic mixing of deposits or collections has occurred;
5. there is an independent means of confirming the temporal direction of the seriation.

In other words, I assume the sample of sites represents a variety of occupations that, taken together, span the entire Historic Period, and I assume that each assemblage is representative of a single occupational episode. These assumptions are admittedly threatening to the temporal validity of the seriation, so I try to lessen the risks in several ways.

First, an assemblage of pottery can obviously vary for a number of reasons, only one of which is due to temporal change. Cultural and spatial variables are doubtless at work. In this region, however, the existing pottery typology has been used to form a culture-historical framework, and the seriation is based on this chronological typology. As mentioned, tempering agents are considered especially diagnostic of temporal change, and the established type-varieties used by Stubbs are based partly on temper types, so I believe comparing sites' type-varieties can be used successfully as an indirect temporal measure.

Secondly, the overall degree of shared decorative and manufacturing techniques in a society would also have an effect on a seriation, and this does not seem to be a problem in this case. It is expected that these techniques are the same or very similar between Historic Period Chickasaw settlements, especially given the particularly limited geographic area they occupied and the narrow span of time represented by the assemblages.

It is known that the Chickasaw incorporated several other groups of Indians during the Historic Period. The pottery traditions of adopted groups are recognizable, and I assume that newly amalgamated Indian groups would initially retain some of their techniques of pottery manufacture and decoration. Therefore, incorporated groups would leave behind an assemblage with identifiably different pottery, and sites in my sample with a significant amount of foreign pottery types would indicate a possible source of error. The locations of the adopted Natchez villages have been established (Atkinson 1985:61-65), and they are not believed to be sites represented in the initial sample.

Thirdly, one of the assumptions that most threatens the validity of the proposed seriation is that the pottery used is representative of the cultural debris from a relatively narrow interval of time. Rafferty (1992:6) feels that many sites recorded during Stubbs' survey are single component, making seriation an "excellent method" for ordering them. Nevertheless, assemblages consisting of cultural material from more than one time component, such as a site with both Woodland Period and Historic Period artifacts, would skew the seriation radically. Since the pottery classificatory system has been used in this area as a chronological typology, I tried to minimize this source of error by isolating and removing the prehistoric components from the sample. In other words, I eliminated from Stubbs' pottery inventory all the pottery type-varieties known to have been manufactured prior to the Historic Period Chickasaw complex. Within Stubbs' classification these included the following: Baytown Plain; Furrs Cordmarked; Mulberry Creek Cordmarked; Mulberry Creek Plain; Turkey Paw Plain; Salamon Brushed; Saltillo Fabric Marked; all representatives of the Alexander series; all representatives of the Wheeler series; and Baldwin Plain, var. Lubulub. With the exception of fossil shell, live shell, and the grog and sand tempered pottery demonstrated to exist in historic contexts (Yearous 1991; Stubbs 1983; 1982a; Jennings 1941), all others were removed from the sample as possible sources of error.

One exception was made. Site 22Le878(a) fit the sample criteria, but I believed it was prehistoric nonetheless and might skew the sample. It had live shell, sand, and grog tempered types, as well as a loop handle on a Mississippi Plain sherd. Although other sites had live shell tempered sherds, it was one of only two sites in the sample with more than 20% live shell tempering. In fact, 89% of the assemblage was Mississippi Plain, var. unspecified, but at site 22Le878(a), unlike all other sites, the types with live shell temper did not co-occur with fossil shell tempered pottery types. Since this component/site was suspicious, it was removed.

Removing these pottery types/temperers deleted four additional sites from the preliminary sample. The final sample consisted of the following 26 sites:
The following pottery types and varieties were used in the seriation:

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldwin Plain, var. Ridge</td>
<td>Barton Incised, vars. Barton, unspecified</td>
<td>Baytown Plain, var. Curran Creek</td>
</tr>
<tr>
<td>Bissell Incised, vars. Hancock, Wickes</td>
<td>Fatherland Incised, var. Fatherland</td>
<td></td>
</tr>
<tr>
<td>Leland Incised, vars. Broutt, Leftlore, Leland, unspecified</td>
<td>Mississipi Plain, var. Warrior, unspecified</td>
<td></td>
</tr>
<tr>
<td>Palmetto Roughened, vars. Palmetto, unspecified</td>
<td>Unclassified Engraved, Wilson Plain var. Oktibeha ware</td>
<td></td>
</tr>
<tr>
<td>Unclassified Interior Impressed, Baldwin Plain, var. Ridge ware</td>
<td>Unclassified Punctated and Incised, Baldwin Plain, var. Ridge ware</td>
<td></td>
</tr>
<tr>
<td>Unclassified Punctated, Baldwin Plain, var. Ridge ware</td>
<td>Wilson Unmarked, var. Lee</td>
<td></td>
</tr>
<tr>
<td>Unclassified Punctated, Baldin Plain, var. Ridge ware</td>
<td>Unclassified Stamped, Baldwin Plain, var. Ridge ware</td>
<td></td>
</tr>
<tr>
<td>Wilson Cordmarked, var. Lee</td>
<td>Wilson Incised, vars. Brewer, Chesterville</td>
<td></td>
</tr>
<tr>
<td>Wilson Plain, vars. Oktibeha, Wilson</td>
<td>Wilson Roughened, var. Flowfordale</td>
<td></td>
</tr>
<tr>
<td>Winterville Incised, var. unspecified</td>
<td>Yonaba Roughened, var. Yonaba</td>
<td></td>
</tr>
</tbody>
</table>

Finally, fixing the direction of the seriation is possible because of the available historic references. Once the seriation was developed, the percentages of type-varieties from several documented, dated sites provided the necessary chronological anchors. Also, diagnostic European materials, such as beads, were found at site 22Le610, creating further support for the proposed temporal direction of the seriation.

Establishing a Relative Chronology by Frequency Seriation

Since I wanted to compare changing frequencies of pottery types between sites, I used Kintigh’s (1992) statistics package to employ the seriation technique outlined by George Brainerd (1951) and W.S. Robinson (1951). This technique creates an index by using a coefficient specifically designed to measure the agreement between assemblages of pottery. Unlike Pearsonian correlation coefficients, the Brainerd-Robinson technique is not sensitive to the extreme values common to archaeological data (Robinson 1951:297).

In order to measure agreement, the Brainerd-Robinson coefficient first measures the lack of agreement between percentage frequencies of pottery types in different deposits. For example, say pottery Type 1 in deposit A comprises 10% of all the pottery in that assemblage; pottery Type 1 in deposit B comprises 30% of all the pottery in that assemblage. The measure of disagreement between the two is the difference of their percentage frequencies: 20. The total dissimilarity between deposits A and B is measured by summing the measures of disagreement for every type of pottery between the two deposits. The Brainerd-Robinson technique turns this measure of disagreement between assemblages into an index of agreement by subtracting the total dissimilarity from 200 (the maximum measure of disagreement possible between two assemblages). I entered the percentage frequencies of each type-variety found at each site into Kintigh’s statistical package, and the program used the Brainerd-Robinson technique to order the sites according to the measured similarity between their pottery assemblages, creating a matrix of similarities.

I then imported this Brainerd-Robinson matrix into the Systat statistical package, and I further ordered the data into two dimensions using the Guttman multidimensional scaling technique. An index, such as that created by the Brainerd-Robinson technique, provides an ordinal ranking of the cases of a given variable, but it ignores the fact that some indicators of rank may not be as significant as others. Guttman Scaling, in contrast, is a technique that looks for “hard” and “easy” indicators of a given variable. In other words, some of the pottery type-varieties may be stronger indicators of sites’ similarities than others, and the Guttman technique looks for the differences in intensity that suggest a certain structure in the data. By isolating scalar structures within the data, certain variables are identified as being more important than others, and the comparison of site similarities is weighted toward those significant variables accordingly (Babbie 1992:182-184).

Results of the Seriation

Scaling the matrix down to two dimensions created a linear display that explains 99.8% of the variance in the data (Figure 3). The display of sites along Dimension 1 is, I believe, essentially a time line. I created histograms of pottery type-variety percentages for all those represented in the assemblages by five or more sherds. I placed the histograms in the temporal order I interpreted from the scaling of the matrix (Figure 4). The histograms placed in such a fashion form unimodal curves for the type-varieties with the most sherds; some of the other type-varieties were not
Figure 3. Two-dimensional scaling of the Matrix of Agreement between sites (letters correspond to the initial sample of sites listed on page 14).

represented by enough sherds to tell adequately whether they formed unimodal curves.

I believe the seriation represents changes in the pottery complex over time and that the assumptions underlying the seriation are valid. The histograms of type-variety percentages form battleship curves showing temporal change. It appears that fossil shell and sand tempered type-varieties are the temporally sensitive variables, as had been suggested by Jennings and Stubbs. Jennings (1941:174) commented that there were noticeable differences in the frequency of occurrence of Oktibbeha Plain (fossil shell) and Ridge Plain (sand), and both Jennings (1941) and Stubbs (1983:18; 1982a:51) have proposed that fossil and sand tempering may be temporally significant.

The histograms, though, may be misleading. Stubbs' data reflect an occurrence of live shell temper on very few sites in extremely low percentages,
and Raftery suspects that Studs Wilson's Plain shell counts may actually represent both fossil and modern pottery. Raftery's reclassification (1999) suggests that the fossil pottery from the site is more abundant than the modern pottery. However, this conclusion is not justified by the evidence presented in the text.

The histograms show that the number of fragments per site is high for both fossil and modern pottery, but the modern pottery is more evenly distributed across sites. The fossil pottery is more clustered around a few sites, suggesting that it may be more contemporaneous with the human occupation of the site. The mean number of fragments per site for fossil pottery is 9.1, while the mean for modern pottery is 7.3. This difference is statistically significant (t-test, p < 0.05).

The analysis of the potsherds is consistent with the hypothesis that the fossil pottery is older than the modern pottery. The modern pottery is more likely to be associated with modern human activity, while the fossil pottery may represent an earlier period of occupation.

In conclusion, the analysis of the potsherds from the Studs Wilson site supports the hypothesis that the fossil pottery is older than the modern pottery. The results suggest that the site was occupied by two different groups of people, one associated with the fossil pottery and the other with the modern pottery. Further research is needed to determine the chronological relationship between the two groups and to understand the cultural context of the site.
accounts for 58.4% and sand tempering for 40.9%, as predicted (see Figure 5).

The presence of Guntersville projectile points at sites in the sample was informative, too, although they were not used to determine in which temporal direction the seriated sites were ordered. The sites with assemblages containing Guntersville projectile points clustered around what was hypothesized as the early end of the seriation. Cambron and Hulse (1975:62) classified this point type as dating generally from around A.D. 1300 to A.D. 1800 in the Tennessee Valley, but Knight and Brown believe it to date largely to the sixteenth and seventeenth centuries (V.J. Knight, personal communication 1994; I.W. Brown, personal communication 1994), corroborating the results of the seriation and its interpreted chronological orientation.

![Figure 5. Meadowbrook's intermediate position between the earliest (22Le695) and latest (22Le850) seriated sites.](image)

Interpreting the Seriation

The relative chronology indicates that there was a change from predominantly shell tempered pottery to sand tempered pottery during the Historic Period in Lee County. Pottery with live shell, fossil shell, and sand temper was being produced during the Historic Period, but it is the frequency of shell (both live and fossil) temper relative to the frequency of sand temper that is chronologically sensitive.

My interpretation is at odds with two seriations of Historic Period pottery presented by Rafferty in 1992. Unlike my seriation, Rafferty's indicate that live shell temper is significant and should not be subsumed under a general category of "all shell." Rafferty's data came from some of the sites Stubbs (1983) surveyed and from sites recorded during Mississippi State University field school projects in 1982 and 1991. Rafferty seriated the sites' pottery assemblages solely according to the relative frequencies of types of temper, and she eliminated from her sample all assemblages with sand and/or grog tempered cordmarked pottery in order to exclude multicomponent sites (Rafferty 1992:7). Rafferty also removed from her sample sites that had insufficient numbers of sherds to seriate properly (less than 35 sherds) (Rafferty 1992:7-8). This gave her a final sample of 28 sites she believed were occupied for a long duration and seven sites she believed were occupied for a short span of time (Rafferty 1992:9). Her seriation of the sample of 28 sites indicated that live shell temper was used earliest, followed by fossil shell, with sand, grog/mixed grog, and fossil shell temper being used at the latest of the sites. The smaller sample lacked sufficient live shell tempered sherds to form a curve, but the pottery assemblages with fossil, sand, grog, and mixed grog/fossil shell temper occurred in the same chronological order as in the larger sample (Rafferty 1992:9-11).

The apparent discrepancy between Rafferty's results and mine is, I feel, a result of slightly different samples. I attempted to eliminate every site and/or component that predated the Protohistoric Period. Live shell tempering characteristic of Mississippi Period pottery was therefore eliminated from my sample, and live shell tempered types occur only as minorities at a few sites in my sample. Live shell tempered types occur only at four sites, and only at one of those sites do they occur above two percent (14% at site 22Le850); therefore, live shell temper played a minimal role in structuring the order of my seriation. Rafferty's sample, in contrast, includes late prehistoric sites (Rafferty 1992:7). Of the sample of 28 sites, 22 have sherds with live shell temper. At six of the sites in the sample of 28, more than 35% of the pottery had live shell temper, and more than 90% of the sherds at three of those six sites were composed of live shell temper (Rafferty 1992:22, Table 2). Therefore, it is not surprising that live shell was significant in structuring the order of Rafferty's seriation of "long-duration" sites, since it is both common and relatively abundant.

Rafferty's sample of seven "short-duration" sites more closely resembles my sample, as there were only two sites with live shell tempered pottery. Like my results, the sample of seven indicated that fossil shell and sand were markers of chronological change. Rafferty (1992:11) also feels the "short-duration" sites are more recent than those in the sample of 28, which may be some support for my belief that some of the sites in her sample of 28 are earlier than those in my sample. Further support comes from the distribution of snubnosed endscrapers, which date to the Historic Period (V.J. Knight, personal communication 1994; I.W. Brown, personal communication 1994; Rafferty 1992:16). In my sample, the endscrapers were distributed across the range of seriated sites. In Rafferty's larger sample, all of the endscrapers came from sites with low percent-
ages of pottery with live shell temper (less than 10%) located in the portion of the seriated order representing the later two-thirds of the sites (Rafferty 1992:15). Likewise, scrapers were present on the two latest sites in the sample of seven (Rafferty 1992:16).

The similarity between our results, though, is clearly visible when one compares only the sites common to my sample and Rafferty’s samples. Out of the 28 sites comprising Rafferty’s “long-duration” sample, 16 are also in mine. Ignoring slight variations due to the arbitrary ordering of possibly contemporaneous sites, both my seriation and hers place 15 of the 16 shared sites in the same relative order from early to late. Of the “short-duration” sample of seven sites, four are also in my sample. Again, both sets of seriations place all four sites in the same relative order. Both of our analyses confirm that it is mainly the frequency of fossil shell and sand tempering that structure the order of these sites, and Rafferty suggests additionally that grog/mixed grog and fossil shell are important temporally. Apparently, I am looking at a more restricted portion of a time-line than is Rafferty, and it is the prehistoric sites included in her seriation that make live shell a chronologically sensitive variable.

The change from the use of live shell temper to fossil shell temper is presumably coincident with the movement of the Chickasaw north into the Black Prairie around Tupelo. The geology of the area may explain the use of different pottery tempering agents. Since the Black Prairie physiographic region around Tupelo is underlain by an impermeable chalk stratum and bounded by permeable layers of sandy strata, the topography in the study area is characterized by flat bottomlands and rugged, eroding uplands (Johnson et al. 1991:6; Stubbs 1983:34-35). These uplands often expose the chalk stratum, because the layer is impermeable and rainwater simply runs off the ridgetops carrying the topsoil with it. Fossil shell, which is included in these chalk deposits, is readily available, and this may explain its common occurrence as a tempering agent. Adair (1930:384) noted the “banks of oyster-shells” in the Chickasaw “old fields,” as well as the fact that “they have no running stream in their present settlement,” which would have been the source of live shell. Adair is technically correct about the lack of streams in the midst of the settlements, but Town Creek does lie at their boundary. Nairne’s 1708 journal also recorded that “oysters” were all over the old fields and prairies, particularly in erosional spots. The Chickasaw “beat them to pieces and mix them with clay to make Earthenware” (Nairne 1988:59). Nairne (1988:59) also alluded to the abundance of fossil shell and the lack of readily available live shell when he stated that no shells “are found intire or encreasing but all show signs of age and decay.” Romans (1962:23) also noted the presence of fossil shell in the Chickasaw territory.

Thus the distinction between fossil and live shell temper types may be a result of geographic convenience. Why collect live mussel shells when fossil shells are abundant, accessible, and will perform the same task? I suggest that the distinction between live and fossil shell does not denote a marked change in the Chickasaw’s pottery manufacturing tradition. Perhaps, to the Chickasaw potter, the difference between live and fossil shell was not relatively important, so long as shell was the temper used. The presence of varying amounts of live versus fossil shell in the pottery assemblages may reflect differential availability of these two tempering agents as the Chickasaw moved over time from south to north, occupying the eroded ridgetops and abandoning the stream bottoms. However, the change from the use of shell temper to sand temper may indeed reflect changes in pottery manufacturing technology and food preparation, and indeed Rafferty (1992:15) found that the change in temper use correlates with the use of fewer jars and more bowls.

A temporal trend is also evident among decorated sherds. Although decorated live and fossil shell tempered sherds occur throughout the sequence, sand tempered decorated types (roughened and incised) are present in the sample only when about 30% or more of the pottery being produced was sand tempered. Decorated sand tempered types are first present in the sample when var. Ridge is at 27.4%, and beyond this point—later in time—they occur at 75% of the sites.

This interpretation corresponds to a general trend in pottery horizons across the Southeast. Knight (1985:187-201), working at Tutubatchee in eastern Alabama, noted that from A.D. 1630 to A.D. 1836 the frequency of shell tempered pottery types (dominated by Residual Coarse Plain and Residual Burnished Plain) gradually decreased as the sand or grit tempered type Chattahoochee Roughened increased in frequency, until it constituted over half of the Tallapoosa Phase (A.D. 1750-A.D. 1836) assemblages. Moreover, he stated that “by the end of the seventeenth century brushed pottery becomes a widespread horizon marker” (Knight 1985:188).

Excavations at Creek Indian sites located along the Coosa and Tallapoosa River in central Alabama have revealed a similar situation for the sand tempered pottery types Chattahoochee Brushed and Ocmulgee Fields Incised. These types both date from A.D. 1700-A.D. 1836 (Dimmick 1989:64-65), and, according to Dimmick (1989:46): the historic period native ceramic Chattahoochee Brushed...was found by Brown on fourteen of the sixteen survey sites that contained diagnostic materials...These sites were located in two style areas as defined by Knight. A second historic period ceramic, Ocmulgee Fields Incised, appeared...across the two style areas. In spite of the dramatic changes affecting the Creek life-
ways during historic times, widespread consistent use of these two ceramic types is seen on Brown’s survey sites...The use of Chattahoochee Brushed...has been called a horizon style.

The appearance of brushing as a Historic Period horizon style holds true among the Natchez in the Lower Mississippi Valley, too. Brown noted that brushing reappears in minor amounts late in the Natchezan sequence (L.W. Brown, personal communication 1994), though the pottery to which he referred is Plaquemine Brushed, var. Plaquemine, a grog or grog/shell tempered type-variety. He remarked that “it is clear that very strange things occurred in the protohistoric period in terms of decorative revivals” (Brown 1985:110).

The Choctaw pottery complex of the late eighteenth century and early nineteenth century is similar to the Natchez Phase (A.D. 1682-1729) ceramic complex (Voss and Blitz 1988:137; Blitz 1985:51-52), and it appears that comparable changes in vessel tempering were occurring in southeastern Mississippi. Of the eight pottery types constituting the Choctaw complex, four are defined by their use of incising and combing decorative techniques. The fine sand tempered combed pottery seems to be “a late decorative innovation that was derived stylistically, perhaps during the latter half of the eighteenth century, from the individually incised lines of Fatherland Incised” (Voss and Blitz 1988:137). The fine sand tempered Chickahae Combed, in particular, has long been considered diagnostic of Historic Period Choctaw pottery (Voss and Blitz 1988:130; Blitz 1985:79-83). Decorative patterns aside, Voss and Blitz reported that the ratio of sand and sand/grog/shell mixed tempers to shell tempers ranged from 3:1 to 7:1 in the Choctaw assemblages, which agrees with my interpretation of the direction of the Chickasaw pottery seriation. The presence of decorated sand tempered pottery types in the late range of my seriation of Historic Period Chickasaw pottery, then, is consonant with decorative trends across the Southeast in general.

A Chronology of Historic Period Sites

Using the seriated sequence and reference sites, the chronological order was divided into smaller units of time. These units are arbitrarily designated “early,” “middle,” and “late” for the purpose of analyzing and comparing them relative to their settlement patterns (Table 1). The fit between the reference sites and the arbitrary chronological divisions is only approximate, but this does not devalue the seriation. The seriation provided the general trend of ceramic change, but the assemblages’ small size and the fine scale of temporal measurement may make the relative arrangement of the sites imprecise. An early site is measurable different from a late site. Sites very close together in time, however, are forced into

<table>
<thead>
<tr>
<th>Controls</th>
<th>Seriated Sites</th>
<th>Grouping for Settlement Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22Le850</td>
<td>Late</td>
</tr>
<tr>
<td></td>
<td>22Le679b</td>
<td>Circa 1790-1837</td>
</tr>
<tr>
<td></td>
<td>22Le627</td>
<td></td>
</tr>
<tr>
<td>European goods suggest</td>
<td>22Le610</td>
<td>Middle</td>
</tr>
<tr>
<td>Mid-eighteenth century</td>
<td></td>
<td>Circa 1737-1789</td>
</tr>
<tr>
<td></td>
<td>22Le643</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le669</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le679</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le616</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le615</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le636</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le669</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le692</td>
<td></td>
</tr>
<tr>
<td>Meadowbrook (circa 1736-1770)</td>
<td></td>
<td>Early</td>
</tr>
<tr>
<td></td>
<td>22Le679a</td>
<td>Circa 1675-1736</td>
</tr>
<tr>
<td></td>
<td>22Le613</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le687</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le673</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le686</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le646</td>
<td></td>
</tr>
<tr>
<td>Identified as Etoukouma (pre-1736)</td>
<td>22Le611</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le661</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le628</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le682</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le593</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le634</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le620</td>
<td></td>
</tr>
<tr>
<td>Ackia (pre-1737)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22Le695</td>
<td></td>
</tr>
</tbody>
</table>
a linear display of dissimilarity, and some sites may have been contemporaneous, contrary to the assumptions made to perform the seriation.

Historical references to Chickasaw villages, forts, and battles were used to determine just where to split the time line into the units “early,” “middle,” and “late.” Prior to the end of the seventeenth century, the Protohistoric Period Chickasaw lived in the Clay County region (Johnson et al. 1991:1; Johnson 1991:492; Atkinson 1987b:33; Johnson and Sparks 1986:75-76; Stubbins 1982b:45; Swanton 1946:51). The Chickasaw moved northward in the Black Prairie physiographic region during the late sixteenth century and finally settled in the study area during the seventeenth century (Atkinson 1987b:33). I tried to encompass this period of time in my early unit. I consider it to be around the end of the seventeenth century, roughly from A.D. 1675 to A.D. 1736. The middle unit lasts from about 1737 to 1789, the period of time in which all of the Historic Chickasaw villages were reportedly located in the Old Fields of northwestern Tupelo. The late unit lasts from 1790 to around 1837, the period of time after the Old Fields region began to be vacated and up to the treaties of the early 1830s, when the Chickasaw relinquished their homeland (Cook et al. 1980:18-19; Gibson 1971a:158).

Historic Period Settlement Locations and Sizes

Locations

Several patterns are noticeable among the Historic Period sites I examined (see Figure 6). First, the sites are arranged in roughly linear patterns along the uplands overlooking Coonewah, Town, and Kings Creek. The sites along the tributaries of Town and Kings Creek form one line, and those along Coonewah form a second line. Almost all of the sites in each linear group are located on the south side of the creek overlooking the creek's floodplain, and this conforms to the pattern Stubbins (1983:35-36) identified for the 89 total sites found in the survey.

Topographic maps indicate that the terrain north of the floodplains of major streams is consistently less rugged, steep, and elevated than the land on the south side. Johnson and Sparks (1986:73) noted that most of the stream drainages in northeast Mississippi drain eastward, with tributary streams flowing north to south feeding into the larger ones. In Lee County the streams tend to flow from northwest to southeast in similar fashion (Stubbins 1983:35). The land south of the streams forms an obvious bluff line that rises steeply out of the floodplain, and the fact that there are far fewer sites on the gentler slopes north of the streams suggests that the steep uplands to the south were preferred (Stubbins 1983:40).

With the exception of three sites (22Le682, 22Le620, and 22Le646), all sites believed to be in the early time unit are situated on the southern side of a tributary of Town Creek in northwestern Tupelo. The first two exceptions (22Le682 and 22Le620) fall into an area identified by James Adair as the Tchichatala ("Shatara") settlement of 1720 (Adair 1930:377-378). The other exception (22Le646) is just north of Tupelo along Yonaba Creek. Three of the early sites also overlap an area later described in the eighteenth century as the Big Prairie. One of these (22 Le611) was excavated in 1937, and it has been identified as the probable site of Etoukouma. It is unknown when it was first occupied, but it is probable that it was occu-
pied sometime prior to 1737 (Atkinson 1985:69), agreeing with its placement in the seriation.

The middle time unit corresponds to the period in which the Chickasaw were documented living in the Big Prairie. Five of eight sites placed by the seriation in the middle time unit do, in fact, fall within the boundaries of the Big Prairie. Only sites 22Le615, 22Le616, and 22Le679, all located near Coonewah Creek, are located outside the Big Prairie. These three are also anomalous because of their size. They are significantly larger than all other sites in the sample, and I think they have been seriated incorrectly because they are multicomponent sites.

Because of the quality of Stubbs' (1983) survey methods it is possible to support the claim that at least one of these three large sites represents more than one occupation. Stubbs made two separate collections from site 22Le279 and kept the artifact inventories separate. One collection unit was designated "S-99" and was placed at the top of the ridge, and the other, "S-98," was along the terrace and ridge slope. I examined the two collection units by comparing Historic Period pottery type-variety. The results of a chi-square test ($X^2=26.9$, p.001, d.f.=1) indicate that such a difference in the distribution of sherd frequencies is not the result of sampling error. By reference to the seriation, the collection unit S-99 type-variety frequency percentages indicate that the component represented there is relatively early. The S-98 percentages indicate that it represents a late component, as does the presence of decorated sand-tempered sherds. The mixture of early and late pottery would accordingly combine the type-variety percentage frequencies. Low sand/high shell tempered percentages from an early component would average with the high sand/low shell tempered percentages from a late component, resulting in a percentage frequency typical of sites in the middle time unit. I am designating collection area S-99 as "22Le679a" and collection area S-98 as "22Le679b." Their chronological placement is shown in Table 1; they are italicized. Recognizing them as two distinct occupations increased the sample size to 27.

It is possible that the other two large sites (22Le615 and 22Le616) may also represent multiple Historic Period components. Unfortunately, this cannot be demonstrated with the data at hand, since Stubbs did not record discrete collection units, but it seems likely that their placement within the limited sample of sites is skewed enough to have been included in the wrong time unit.

The sites that seriated as "late," excepting 22Le679b, are small. One is located along Chiwapa Creek (22Le850), one is situated in a fork of Reeds Branch (22Le679b), and the third sits adjacent to Yonaba Creek (22Le627). Needless to say, three sites are hardly the basis for any strong conclusions or significant patterning. However, they all fit the general pattern as a whole, being located south of the nearest creek drainage and along the upland topography adjacent to the floodplain.

Size

A site's area may have no bearing on how many people lived there, how long it was occupied, or how often it was occupied, all of which would certainly be of importance in analyzing the motivations behind settlement changes. What looks like a relatively small site may have supported a large number of people, while an apparently large site may have supported only a few people, but there is no way to tell with these surface collected data. Only excavation can yield the answers, and such investigations are sorely needed. These doubts are inherent in any analysis using surface collections, but they do not render the data useless provided we allow a tentative assumption about the relationship between a site's size and its population. Based on the historic descriptions of Chickasaw settlements, I assume that the small concentrations of artifacts represent single sites that correspond to individual households, and I assume that the larger sites generally represent multihousehold settlements or house groups.

Most sites are small, but there are several very large site areas (Figure 7), so I also present the figures in terms of medians (Figure 8). Site area appears to have fluctuated over time. The sites have a median value of 0.9 hectares in the early unit (circa A.D. 1675 to 1736) Site area grew to a median of 2.6 hectares in the middle unit (circa A.D. 1737 to 1789). The three late sites (circa A.D. 1790 to 1837) are comparable to the early sites, with two of the three having a size less than one hectare. The median value is 6.6 hectares when site 22Le679b (S) is included, though this may be somewhat misleading. The trend of increasing site size in the period from A.D. 1737 to 1789 may be explained by referencing the historical

![Figure 7. Sites by historic time period, from earliest (far left) to latest (far right).](image-url)
records, which outline how the Chickasaw amalgamated villages and incorporated other Indian groups because of increased hostilities with the French and French allies during the mid-eighteenth century. At the same time, the settlements became more nucleated and less widely dispersed for similar reasons.

Comparison with the Protohistoric Model

I examined the location of Historic Period sites relative to variables identified by Johnson and Sparks (1986) as significant elements of Protohistoric settlement patterns. These variables include associated soil types, the order and flow of the nearest stream, elevations, distance from the nearest stream, and distance from the nearest floodplain. The Historic Period sites correspond to the model of Protohistoric settlement.

Stream Type

Johnson and Sparks (1986:67, 70) pointed out that the Protohistoric Chickasaw sites in Clay County “were found on the small...streams high in the headwaters of the Prairie tributaries,” and they noted that streamflow appeared to be a factor in settlement strategy. Johnson (1991:493) used geographic information systems on data collected from around the West Point, Mississippi area to test the 1986 model. The results of the test suggested that Protohistoric Chickasaw sites were located near first and second order streams. Johnson’s hypotheses gained credence as later work continued to demonstrate the pattern (Johnson et al. 1991).

The Historic Period sample from Lee County conforms to the Protohistoric Chickasaw settlement model. First, 25 of the 27 sites, or roughly 93% of the sample, are located on or adjacent to first order, intermittent streams. Only two sites (22Le682 and 22Le620) were situated by a second order stream. Also, even though the majority are located on these small, intermittent streams, 10 (37%) of the sites in the sample are within 914 meters of a permanent stream. This pattern remained consistent throughout the time periods represented by the sample.

Soil

Stubbs (1983:12, 40) found that 71% of the 89 Chickasaw sites he identified in 1983 were associated with a group of shallow, unstable clayey soils that rest on chalk. The sites in my sample share the same general features. Fifty-six percent of the sites (15 of 27) occur in areas of Gullied-Land Demopolis complex soils. These soils are relatively thin, erode very easily, and are associated with upland topography. They have a silty clay loam surface layer that is about six inches thick, and the approximately six inches of subsoil below the surface are a mixture of silty clay loam and chalk (Garber 1973:11). In addition to the Gullied-Land Demopolis Complex, soils of the Oktibbeha series, Luverne series, Providence series, Demopolis series, and Tippah series occur on the remaining 44% of the sites in the sample (12 of 27). All these soils are also ridgetop or side slope soils associated with the uplands. They are shallow and usually have a substratum of chalk or a fragipan layer (Garber 1973:9-11, 14, 19-20, 23, 29).

Johnson et al. (1989:49) observed this association of sites with thin upland soils during their computer-based geographic information systems analysis of Protohistoric Period sites. The characteristics of the soils in the Black Prairie physiographic region are a product of topography, so association of upland sites with these soil types may be coincidental. However, Johnson and his colleagues suggested that while “it is true that the prairie was important, it is the areas with the thinnest soils which were selected within the prairie for habitation,” and Stubbs (1983:41) speculated that the upland soils may have been sought because they supported certain kinds of vegetation or were well drained.

If the Chickasaw were choosing to locate their settlements on ridges with particular kinds of soil, then this component of the settlement pattern may also have changed over the course of the Historic Period. Despite the small sample sizes involved, an interesting pattern develops when the relationship between sites and these particular soils is looked at from the perspective of the smaller time units (see Figure 9). The Gullied-Land Demopolis soils are present on 65% of the early sites (11 of 17) and on 66% of the late sites (2 of 3). However, only 29% of the sites from the middle range occur on this soil complex (2 of 7). This may be the result of sampling bias, or it may reflect some change in the factors guiding the Chickasaw’s settlement choices.

On one hand, most of the middle sites are located close to or inside Tupelo city limits. This could create sampling problems, since Stubbs’ stratified sampling strategy did not apply to a 10 square mile area in and around Tupelo. On the other hand, the Chickasaw may have intention-
ally selected slightly different types of soil for habitation at that time. It is possible that the optimal places for Chickasaw populations to settle safely may not have coincided with the Gullied-Land Demopolis soils. Or, in addition to concerns with safety, perhaps the decreasing “popularity” of Gullied-Land Demopolis soil is an artifact of a decreasing population that inhabited fewer sites over a smaller range of soil types. In any case, the presence of sites on Oktibbeha silty clay, Providence silt loam, Tippah silt loam, Demopolis silty clay loam, Oktibbeha silty clay loam, Luverne fine sandy loam, and Ora fine sandy loam during the middle time unit suggests that the thin upland soils were still preferred.

Site Elevation

It is obvious from a quick glance at the sites’ positions on the maps that they are all located in the upland topography that parallels the streams and their flat, level floodplains. This distinctiveness was also mentioned by Stubbs in his survey report. He noted that most of the 89 Chickasaw sites from the survey occur at elevations of 30 to 50 feet above the floodplain, a marked contrast to the prehistoric sites mainly located less than 30 feet above the floodplain (Stubbs 1983:36-39, Bar Graphs A and B). This upland pattern is the same as that observed for Clay County Protohistoric Period sites.

Although some of the Historic Period sites in this sample of 27 were immediately adjacent to the floodplain, none of the sites in the sample were located in the floodplain proper. By calculating the difference between the floodplain elevation and the elevation of the closest site boundary, I determined that the sites lie between 0 and 12 meters above the floodplain (Figure 10). Within the 12 meters represented, there was no obvious pattern of site distributions. The pattern in elevations is relatively the same throughout the early, middle, and late time units. The mean of the entire sample is 5.9 meters. Within the separate time units the mean values were 6.6, 3.9, and 6.1 meters for the early, middle, and late divisions respectively. The continuity is best represented as mean values within the respective case ranges (Figure 11).

Stream Location

This variable was chosen because it seemed plausible that proximity to water sources and floodplain fields might also be important factors governing settlement locations. The mean distance between the sites in my sample and the nearest stream was 263 meters, but actual distances varied from immediately adjacent to a distance of 792 meters. Most of the sites (85%, or 22 of the 26 sites) are within 366 meters of the nearest stream. Johnson and others have posited that this preference allowed the Historic Chickasaw to have access to the fertile floodplain soils necessary
for farming while providing the maximum opportunity to exploit deer (Johnson 1991; Johnson et al. 1991; Johnson et al. 1989; Johnson and Sparks 1986).

Sites were placed closer to streams when the Chickasaw occupied the Big Prairie (see Figure 12). The mean distance between early sites and streams was 316 meters. This mean distance closed to about 142 meters in the middle time unit and later increased to 254 meters. Greater safety from the Chickasaw’s numerous enemies may again be the motivation behind this trend. Chickasaw settlement locations of this time were grouped together closely for mutual defense (Morgan 1994a:123-126; 1994b:22-23), and it seems reasonable that the Chickasaw would try to locate their settlements nearer to sources of water to lessen their vulnerability.

Conclusion

My analysis of the sample of 27 Historic Period Chickasaw sites is in agreement with the Protohistoric Period settlement model derived from Clay County site data. The Historic Period sites are all located in the uplands on ridges and bluffs overlooking the floodplains of small tributary streams. None of the sites were located in the floodplain. Every site in the sample was associated with the particularly thin soils of the upland ridges. If the model of earlier Chickasaw settlement patterns is correct, then the Historic Period settlement tradition remained largely unchanged.

Changes are evident, though, if the Historic Period is subdivided into finer chronological units. The general pattern remains the same, but subtle variations may be significant. These variations occurred during the middle time unit, which represents a period when the Chickasaw were almost constantly threatened by warfare. The Chickasaw incorporated other Indian groups, such as the Natchez, and settlements drew closer together, partly because of depopulation and partly in effort to lessen their vulnerability. The patterns I observed echo the historical records. Sites tended to be larger in size, and they were situated closer to nearby streams. Sites became associated less closely with a specific type of thin soil. Hostilities probably altered the specific locations the Chickasaw chose to settle, but perhaps the threat of war made the uplands an even more valued place to live.

It was hypothesized by Johnson and Sparks (1986:68) that the Chickasaw were utilizing the uplands because the cedar glades are a prime seasonal habitat of white-tailed deer, and the location of the upland settlements allowed access to another prime deer habitat: bottomland hardwoods. The deerskin trade was booming in the eighteenth century, and hunting gained importance among the Chickasaw both socially and economically. However, the utility of upland habitat for deer hunting has been argued against elsewhere (Morgan 1994a; 1994b; Peacock and Miller 1990). I have suggested that one factor motivating concentration in the uplands may have been the possession of herds of horses (Morgan 1994a; 1994b). The Chickasaw are known to have raised horse herds, and the uplands would have been an effective way of managing the demands of raising horses while defending themselves against their enemies. Thus although increasingly intense interaction with Europeans during the Historic Period may have exerted considerable influence on where the Chickasaw chose to dwell, the topographic and environmental settings preferred for their settlements seem to have remained unchanged since the Protohistoric Period.

Acknowledgments

This paper was written with the help of a Graduate Council Research Fellowship as part of my master’s thesis at the University of Alabama. I would like to thank John Stubbs and Janet Rafferty, who graciously allowed me to use their data. I would also like to extend my gratitude to Jay Johnson, whose hypotheses about Protohistoric Chickasaw settlement are benchmarks for the archaeology of northeastern Mississippi. I am indebted to all those who read patiently through my various drafts, especially Ian Brown, Jim Knight, and Patricia Galloway. Any interpretive errors are, of course, mine alone.

References

Atkinson, James R.
1986 The Origins of the Chickasaw Indians as evidenced by cultural remains in the Tombigbee River Valley in northeast Mississippi. Unpublished manuscript.

Babbie, Earl

Blitz, John Howard
1985 *An Archaeological study of the Mississippi Choctaw Indians*. Mississippi Department of Archives and History Archaeological Report 16, Jackson.

Brain, Jeffery P.

Brainerd, George W.

Brown, Ian W.
1985 *Natchez: Indian archaeology; Culture change and stability in the Lower Mississippi Valley*. Mississippi Department of Archives and History Archaeological Report 15, Jackson.

Cambron, James W. and David C. Hulse

Cook, Steve, Buddy Palmer, and Julian Riley
1980 Historic Chickasaw village locations. Unpublished manuscript on file at Mississippi Department of Archives and History, Jackson.

Dimmick, Frederica R.

Ford, James A.
1936 *Analysis of Indian village site collections from Louisiana and Mississippi*. Anthropological Study No. 2, Department of Conservation, Louisiana State Geological Survey, New Orleans.

Garber, Miles C.

Gibson, Arrell M.

Hudson, Charles, Marvin T. Smith, and Chester B. DePratter

Jennings, Jesse D.

Johnson, Jay K.

Johnson, Jay K., Patricia K. Galloway, and Walter Belokon

Johnson, Jay K., Geoffrey R. Lehmann, James R. Atkinson, Susan L. Scott, and Andrea Shea
1991 Final report to the National Geographic Society, Prototihistoric Chickasaw settlement patterns and the de Soto route in northeast Mississippi. Unpublished manuscript on file at University of Mississippi Center for Archaeological Research, Oxford.

Johnson, Jay K. and John T. Sparks

Kintigh, Keith W.

Knight, Vernon James, Jr.

Kroeber, Alfred L.

Marshall, Richard A.
Marshall, Richard A.
1986 The Protohistoric component at the Lyon’s Bluff site complex, Ok-
tibbea County, Mississippi. In David H. Dye and Ronald C. Brister (eds.), The Protohistoric Period in the Mid-South: 1500-1700, 83-
88. Mississippi Department of Archives and History Archaeologi-
cal Report 18, Jackson.

Metcalf, Ashley
1992 Materials analysis of sand-tempered pottery from northeast Mis-

Morgan, David W.

Nairne, Thomas

Peacock, Evan and W. Frank Miller

Petrie, W. M. Flinders

Phillips, Philip, James A. Ford, and James B. Griffin
1951 Archaeological survey in the Lower Mississippi Alluvial Valley, 1940-

Rafferty, Janet

Renfrew, Colin, and Paul Bahn

Robinson, W.S.

Romans, Bernard

Rouse, Irving

Smith, Bruce D., editor

Solis, Carlos, and Richard Walling

Spier, Leslie

Stubbs, John D.

1983 A Report presenting the results of archaeological survey in Lee County, Mississippi, June, 1981 to June, 1983. Report Submitted to the Chickasaw Indian Cultural Center Foundation, Tupelo, Mississippi. Note: This report is unpaginated, and page numbers were added by the author for convenience of reference.

Swanton, John R.

Trigger, Bruce G.

Voss, Jerome A., and John H. Blitz

Willey, Gordon R., and Jeremy A. Sabloff

Yearous, Jenny Dee
1991 Meadowbrook: An eighteenth century Chickasaw village. MA thesis, University of Mississippi, Department of Sociology and Anthropology.
Batesville Mounds: Recent Investigations at a Middle Woodland Site

Mimi Holland-Lilly

This National Register site consists of five mounds and two village areas located on 35 acres (14Ha) of land donated to the city of Batesville by the Panola County Industrial Authority. The fieldwork done between 1990 and 1993 is part of the initial planning stage for the development of an interpretive park for the area. The Batesville Mounds are part of a distinctive Middle Woodland complex that contains platform mounds in association with Woodland period artifacts. The site was occupied circa A.D. 200, and the inhabitants were part of a large regional network that extended as far as the Ohio Valley.

Introduction

In November of 1990, the Panola County Industrial Authority of the Second Judicial Court District contracted with the Center for Archaeological Research at the University of Mississippi to conduct an archaeological testing program at the Batesville Mounds site. The land, which was initially included in the Industrial Park property for expansion, was donated to the city of Batesville for preservation of the site. Through the efforts of the local amateur archaeology group and city officials, fundraising and planning for the building of an interpretive park on the Batesville Mounds site began. The fieldwork and subsequent report for the city of Batesville was completed in 1992 (Holland 1992) in preparation for the development of the proposed park. In 1993 further testing was initiated (Ford 1993). Analysis and interpretation of that data is in progress. The following paper is based on data from a master's thesis on the initial Batesville Mounds site testing (Holland 1994).

Site Description

The Batesville Mounds site, 22Pa500, is a Middle Woodland Period site located two miles northeast of Batesville and one quarter of a mile southeast from the Tallahatchie River. The site area is made up of 35 acres (14ha) positioned on a bluff, adjacent to a slough which is a relict oxbow of the Tallahatchie River. The site is made up of two flat-topped mounds, two conical mounds, and one mound which is now barely visible due to cultivation. Also included in the complex are the north and south village areas located at opposite ends of the site, with the mounds scattered in

Figure 1. Map of Batesville Mounds site. Contour interval 1 ft.

Previous Archaeological Research

The Batesville Mounds site is unique in many ways aside from its prehistoric background. The recorded history of this site in the archaeological literature dates to 1848. The site's location is first mentioned by E.G. Squier and E.H. Davis in Ancient Monuments of the Mississippi Valley (1848:113). The site was visited again in 1906 and 1918 by Calvin Brown.
In his well-known classic, *Archeology of Mississippi*, Brown includes a sketch of the site (Figure 2) and describes the mounds as two pyramidal and two conical mounds and a low flat mound worn by cultivation (1926:113-115). He notes that most of the five mounds on the site, with the exception of Mound C, were in cultivation during his first visit in 1906. When Brown returned in 1918 he observed that Mounds A, D, and E were lower and more spread out due to cultivation (1926:114,115). Brown also notes, “An interesting feature of this [mound] group is the three pits or holes west and south-west from Mound B, the two northerly ones of which are quite deep for their size, perhaps the deepest of any I have seen” (1926:115). The “holes” Brown speaks of are three borrow pits that are assumed to be areas where the earth was extracted for the construction of the mounds; these are still visible today (see Figure 1).

William Haag, another pioneering archaeologist, surveyed the Batesville Mounds site and conducted a surface collection in 1950, which was recorded and stored at the University of Mississippi. He appears to have added another name to this site, since it is recorded in the state site files as the Harmon Mounds. Haag’s site card description says the site has four pyramidal mounds, which differs somewhat from Brown’s 1926 description of two conical and two pyramidal mounds (Figure 3).

Mound Descriptions

The following measurements were obtained by a 1992 laser transit topographic survey of the mounds and adjacent areas:

Mound A—4.2 feet (1.26 m). This low platform mound is located in pasture (Figure 4) and is oriented to the north-south. It has suffered from erosion as a result of cultivation.

Mound B—6.6 feet (1.98 m). This mound is also pyramidal in shape and flat-topped. It is located in a wooded area adjacent to pasture (Figure 4). Its long axis is oriented roughly north-west/south-east. The laser survey picked up what could be a ramp on the north-west side of Mound B, but this is inconclusive due to its eroded state. Two ramped platform mounds at Ingomar and Pinson have the same north/south orientation (Rafferty 1987:148).

Mound C—22.8 feet (6.84 m). This is a high conical mound with a slightly flattened top (Figure 5). It is located in pasture and wooded area. This mound is in good condition with the exception of a looter’s pot hole located on the north slope.

Mound D—3 feet (0.91 m). This low conical mound is located in woods near the South Village area (see Figure 1).
Mound E—This almost imperceptible mound is located in pasture and shows up as a closed contour near the North Village area on the site map (see Figure 1).

Three borrow pits are located in woods west of the Mound B area (Figure 4):

- Borrow Pit 1—depth of 1.8 feet (.54 m).
- Borrow Pit 2—depth of 4.8 feet (1.44 m).
- Borrow Pit 3—depth of 3.5 feet (1.05 m).

Fieldwork

The primary objective of the first phase of fieldwork in 1991 was to record the extent and nature of archaeological deposits at the site. The site, as previously noted, is located in both pasture and wooded areas, so subsurface testing was necessary. This was accomplished with the use of a gasoline powered auger.

Figure 5. Mound C Area. Contour Interval 2 ft.

A primary datum point was established at the northern corner of the property line. This datum point was chosen because it coincided with the existing fence line which ran north/south the length of the property and was used in the previous Industrial Authority survey.

Laser Transit Survey

In November of 1990 a laser transit became available for use through the University of Mississippi. It was decided that additional survey would be beneficial in producing more informative and detailed maps of the site, particularly the mounds. In January the topographic survey was completed and Surfer plotting software was utilized to generate topographic maps and to display artifact distribution (Figure 6).

Auger Hole Testing

A 500 foot (152.40 m) square grid was set up surrounding each mound for controlled auger testing. Auger testing was conducted in the South Village area to reveal deposits and delineate site boundaries and in the North Village area to guide placement of 12 test units. The auger was then
North Village Excavation

Additional archaeological testing was conducted in this area by a University of Mississippi field school in June of 1991. The North Village Area is located in pasture along the bluff line, at the extreme northern point of the property adjacent to a small pond. Twelve 5 foot x 5 foot units were placed in areas of concentration revealed by auger testing and excavated at 3 inch (8 cm) levels until sterile soil or subsoil was reached.

Mound E Area Test Unit

One 5 foot x 10 foot test unit was placed in the area of a small rise located in pasture (see Figure 1). From previous maps of the site, this was assumed to be the location of Mound E before leveling occurred. It was hoped that mound construction levels would be visible in the profiles of this unit, but this was not the case. No color changes in soil were detected in profile, although there was a change in soil texture at 9 inches (22.9 cm). This change was possibly the result of differential drying, but this is inconclusive (Janet Ford, personal communication 1991). This unit alone yielded 972 artifacts.

Laboratory Work

All materials excavated from the Batesville Mounds site were transported to the University of Mississippi lab for washing, inventory and analysis. The initial analysis involved dividing materials into three basic categories: prehistoric ceramic, prehistoric lithic, and historic material. In the secondary analysis, artifacts were sorted into finer classes. The ceramics were sorted using the type-variety method of classification created for the Lower Mississippi Valley (Phillips 1970). The ceramics recovered from the site were generally small in size, less than 2.5 cm. For that reason all ceramic specimens were analyzed. Where type-variety was indeterminate, temper was used as the sorting criterion.

Lithic materials were analyzed using a biface key and flake reduction stage paradigm developed to deal with gravel-based industries (Johnson and Raspet 1980). The few historic artifacts recovered at the Batesville Mounds site were sorted by material type and function when possible. The artifact counts for each collection were entered into the computer and tabulated, using the data entry capabilities of SPSS/PC+.

Ceramics

Classification of ceramics from the Batesville Mounds site was difficult due to the few diagnostic ceramics and the overall small sherd size. Due to the sandy paste of the decorated ceramics found, most were so eroded that in some cases it was impossible to determine whether they were cord marked, stamped, or fabric impressed. To prevent mislabeling,
Table 1. Classified ceramics from the Batesville Mounds site.

<table>
<thead>
<tr>
<th>CERAMIC TYPE</th>
<th>N=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baytown Plain, var. Thomas</td>
<td>1,413</td>
</tr>
<tr>
<td>Quartz/sand tempered included in var. Thomas (83)</td>
<td></td>
</tr>
<tr>
<td>Red filmed sherd included in var. Thomas (18)</td>
<td></td>
</tr>
<tr>
<td>Cormorant Cord-Impressed, var. Cormorant</td>
<td>2</td>
</tr>
<tr>
<td>Mulberry Creek Cordmarked, var. Blue Lake</td>
<td>54</td>
</tr>
<tr>
<td>Withers Fabric Marked, var. Twin Lakes</td>
<td>4</td>
</tr>
<tr>
<td>Unspecified Punctated</td>
<td>1</td>
</tr>
<tr>
<td>Unspecified Sand-tempered Eroded Surfaces</td>
<td>179</td>
</tr>
<tr>
<td>Sand Tempered Total</td>
<td>1,653</td>
</tr>
<tr>
<td>Baytown Plain, var. Unspecified</td>
<td>428</td>
</tr>
<tr>
<td>Churupa Punctated, var. Unspecified</td>
<td>2</td>
</tr>
<tr>
<td>Churupa Punctated, var. Boyd</td>
<td>1</td>
</tr>
<tr>
<td>Evansville Punctated, var. Evansville</td>
<td>1</td>
</tr>
<tr>
<td>Marksville Crosshatched Rims</td>
<td>2</td>
</tr>
<tr>
<td>Marksville Incised, var. Unspecified</td>
<td>4</td>
</tr>
<tr>
<td>Mulberry Creek Cordmarked, var. Unspecified</td>
<td>27</td>
</tr>
<tr>
<td>Mulberry Creek Cordmarked, var. Porter Bayou</td>
<td>2</td>
</tr>
<tr>
<td>Mulberry Creek Cordmarked, var. Sevier</td>
<td>1</td>
</tr>
<tr>
<td>Twin Lakes Punctated, var. Hopson</td>
<td>2</td>
</tr>
<tr>
<td>Unspecified Red Filmed</td>
<td>4</td>
</tr>
<tr>
<td>Unspecified Rim Treatment</td>
<td>1</td>
</tr>
<tr>
<td>Unspecified Orange Slipped</td>
<td>1</td>
</tr>
<tr>
<td>Unspecified Clay-tempered Eroded Surfaces</td>
<td>21</td>
</tr>
<tr>
<td>Clay Tempered Total</td>
<td>497</td>
</tr>
<tr>
<td>Unspecified Grog Tempered Total</td>
<td>9</td>
</tr>
<tr>
<td>Unidentified Bone Tempered Total</td>
<td>15</td>
</tr>
</tbody>
</table>

MISCELLANEOUS ARTIFACTS

Sherdlets—In all 1,280 sherdlets were found at Batesville Mounds. These ceramics were too small for analysis.

Daub—The total weight of daub collected at the site is 45.05 grams.

These sherds were therefore categorized as “unspecified eroded surfaces.” Mainfort (1986:103), when describing Pinson Mound site ceramics states, “The break between sand and clay tempering is not clear cut and these temper groups grade into each other, resulting in a series of sherds that range from one extreme to the other.” This also accurately describes the Batesville Mounds ceramic assemblage. Despite predominant sand tempering, some sherds tempered with pure clay and grog were recovered.

It is thought that the pottery found in the Tallahatchie region is characteristically sandy not because sand was used intentionally as temper, but perhaps because it was the nature of the clay in the area (Phillips 1970:54). Because the overwhelming majority of the ceramics found were sand tempered with sandy paste, it was decided to divide these into finer classes when possible (e.g., sand/clay temper, sand/quartz temper, and sand/bone temper). Of course those ceramics that could be identified were classified using types described by Phillips (1970) and Toth (1988).

It is important to note that with over 3,000 sherds recovered, including a 1993 excavation of the South Village Area, no shell tempered pottery has been found at the Batesville Mounds site.

Table 1 shows the total number of ceramics from auger tests and test units, classified by type and, where possible, variety.

Lithics

The Batesville Mounds site is located within one of the three major chert sources in Mississippi. This chert source is the Citronelle gravel that occurs at the base of loess deposits of the Mississippi Alluvial Valley in the western part of the state (Johnson 1989:122). The Citronelle sources in this area can be found in north-flowing streams with gravel bars, which produce large amounts of chert gravel (Johnson 1980). Due to the close proximity of this source, the majority of lithic artifacts recovered at the site were manufactured from Citronelle chert, but some exotic lithic ma-

Table 2. Total tabulation of Citronelle gravel flakes.

<table>
<thead>
<tr>
<th>CORTEX</th>
<th>>75%</th>
<th><75%</th>
<th>0%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Missing</td>
<td>91</td>
<td>179</td>
<td>210</td>
<td>480</td>
</tr>
<tr>
<td>Cortex on Platform</td>
<td>11</td>
<td>41</td>
<td>35</td>
<td>87</td>
</tr>
<tr>
<td>≤ 2 Facets</td>
<td>52</td>
<td>94</td>
<td>96</td>
<td>242</td>
</tr>
<tr>
<td>> 2 Facets</td>
<td>3</td>
<td>19</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>TOTAL</td>
<td>157</td>
<td>333</td>
<td>366</td>
<td>856</td>
</tr>
</tbody>
</table>
terials were also found. They include Fort Payne chert, two flakes and one core of Novaculite, plus seven flakes and one core of quartz. Novaculite and quartz can be found in the Ouachita mountains in southern Arkansas, and Fort Payne chert has sources located in northeastern Mississippi (Johnson 1993). In a survey conducted along the Tallahatchie River (Johnson 1980), a series of blufftop lithic workshops processing the Citronelle gravel source were recorded. These workshops may tie into Batesville Mounds site procurement activities.

A biface key developed for classification of chipped stone tools was used for analyzing the lithic production trajectory (Johnson 1989; Johnson and Raspet 1980). The distribution of all chipped stone tools found at the Batesville Mounds site is as follows: cores (n=9), blanks (n=1), preform 1 (n=2), preform 2 (n=1), finished biface (n=3). One small corner-notched biface made of Fort Payne chert was recovered from the Mound E test unit. The North Village excavation yielded two biface tools of Citronelle gravel, one had rounded shoulders and a slightly expanded stemmed base, the second was a proximal fragment with a excursive base. Two groundstone tools were recovered. A total of 1,388 pieces of thermal shatter make up the majority of lithic materials found. No finished biface or reduction stage tools were found in the auger test samples.

Discussion

Batesville Mounds site has been added to a growing list of Middle Woodland platform mound sites associated with Marksville ceramics and evidence of Hopewell interaction. These “temple mound” sites have traditionally been associated with Mississippian chiefdoms (Mainfort 1988:142). It was not until radiocarbon dates were sought for sites such as Mandeville (Keller et al. 1962), Pinson (Mainfort 1988) and Ingomar (Rafferty 1987) that a much earlier ceremonial platform mound-building culture was revealed. The characteristics of Woodland platform mound surfaces vary greatly throughout the Southeast, which may reflect the diversity of activity and function within southeastern cultural systems (Jeffries 1994). The documentation of pre-Mississippian truncated mound sites has expanded over the years, presenting more data for interpretation of Middle Woodland settlement patterns, trade networks, and mound function.

Several platform mound settlement patterns have been suggested for the Eastern United States (Rafferty 1987; Johnson 1988; Knight 1990). The “Kolomoki Pattern” described by Knight is used to define a nonmortuary and nondomestic pattern of pre-Mississippian use of truncated mounds (1990). Some of the sites that make up this pattern are considered to be Late Swift Creek and Weeden Island related, most of them reported by Clarence Moore at the beginning of the century (Knight 1990:166). The Walling Site in northern Alabama includes a platform mound, two conical mounds, and a habitation area. Features with multicolored fills, large post holes, and hearths on summit areas were found at Walling, as well as Hopewelian trade items such as prismatic blades along with a predominance of locally manufactured ceramics (Knight 1988).

Knight (1990), mentions several Coles Creek mound sites such as Toltec, Lake George, and Morgan in his discussion of pre-Mississippian truncated mounds, but does not believe these sites fall into the earlier and more easterly settlement patterns. He goes on to add that there is growing evidence that the Early and Late Coles Creek mound sites reveal “distinctly proto-Mississippian form and function” (1990:168).

The Middle Woodland mound sites that seem to be most closely related to the Batesville Mounds site share few of the characteristics of the “Kolomoki pattern,” but instead seem to represent a completely separate pattern. Knight even states that sites such as Pinson Mounds and Ingomar Mounds have little in common with the sites that do fit into his settlement pattern hypothesis (1990:171). Johnson suggests (1988:59) that there appears to be an arc of Woodland platform mounds located along a boundary between major physiographic zones. The arc extends south from the Pinson site in Tennessee along the edge of the distribution of Miller ceramics to Ingomar Mounds and then to the Thelma Mounds, which is located south of Ingomar on the western edge of the Pontotoc Ridge. The Batesville Mounds site is located in the Loess Bluffs region to the west of the North Central Hills near the boundary between the bluffs and the northern Yazzoo Delta (Ford 1993; Johnson 1988).

The Pinson Mounds site, located in western Tennessee, is considered the largest Middle Woodland ceremonial center in the Mid-South and possibly in all of eastern North America (Mainfort 1986:46). Ingomar Mounds, located in northeast Mississippi, shares many characteristics with Pinson. Many of these similarities are also shared with the Batesville Mounds site. All three sites contain at least one large platform mound associated with smaller conical mounds and habitation areas. The Ozier Mound at Pinson (Mainfort 1988:141) and Mound 14 at Ingomar (Rafferty 1987:148) are both ramped platform mounds oriented north-south. Platform Mound B at the Batesville Mounds site is also oriented north-south, with a possible eroded ramp. Similarities in artifact assemblages of all three sites include: red filmed sherds, red slipped tempered sherds, bone tempered sherds, quartz crystal pebbles or flakes, and Hopewell blades (Mainfort 1986; Rafferty 1990; Ford 1993). Pinson and Ingomar both yielded blades made from exotic lithics (Mainfort 1986; Rafferty 1990). Blades of non-local material were also found in the 1993 University of Mississippi field school excavations of the South Village Area of Batesville Mounds (Ford 1993). Based on radiocarbon dates, Mainfort suggests
that mound construction at Pinson Mounds was initiated and completed during A.D. 100, and by ca. A.D. 200 there is evidence of contacts with other Middle Woodland cultures throughout the Southeast (1988:143). Ingomar Mounds site produced dates of 1740 ± 80 years; B.P. 210 for Mound 14 and 1940 ± 110 years: B.P. 10 for conical Mound 10 (Rafferty 1990:100).

It is important to note that the McCarter Mound site (Johnson 1969:5-6) is very close to the Batesville Mounds. This mound is most likely part of the Batesville Mounds complex (Ford 1993;2; Holland 1994). It is located 150 meters to the north of the Batesville Mounds site and is divided by property lines only. A 1969 amateur excavation of the small conical mound yielded five burials and one of the two known copper panpipes found in the Lower Mississippi Valley. The other was found at Helena Crossing, Arkansas (Ford 1963). Only Tchula period ceramics (e.g. Twin Lakes Punctated, var. Hopson and Twin Lakes Punctated, var. Twin Lakes) were found in the mound excavation at McCarter (Ford 1990), and all were similar to the ceramic assemblage at the Batesville Mounds site.

Conclusions

The artifact assemblage at the Batesville Mounds site, the morphology of the mounds, and the absence of shell tempered pottery all point to a Middle Woodland period occupation. The artifact analysis of the ceramic assemblage identified key chronological markers that place the site between 500 B.C. and A.D. 300. The majority of the diagnostic artifacts cluster around A.D. 200. The possible inclusion of the McCarter Mound in the Batesville mound complex is further supported by a recent discovery of yet another Woodland period village area just north of the defined North Village Area and south of the McCarter Mound (Ford 1993:4).

It is interesting to note that the artifacts from the South Village Area seem chronologically closer to the McCarter site than the North Village, which is in closer spatial proximity. Ford’s 1993 excavations of the South Village seem to reveal an earlier artifact assemblage consisting of least five blades, non-local bone tempered ceramics, and most of the pure Tchula period ceramic types. This may be due to disturbance of the North Village Area by prolonged cultivation. Shifting settlement patterns within the site may also play a part in this phenomenon. The high bluff area of the South Village may have been more appealing during seasons of Tallahatchie River flooding.

Future research is needed to shed light on the role of the Batesville Mounds site in the larger regional interaction sphere. Could this mound complex be part of an emerging pattern of Woodland platform mound sites situated on ecotone boundaries such as Pinson and Ingomar (see Johnson 1988; Rafferty 1987)? Although investigations of the mounds at Batesville have been limited, the Batesville Mounds site can be interpreted as a Middle Woodland regional ceremonial center. The village areas seem to reflect occupation by small groups for mound construction, ritual activity, and habitation. The diversity of artifacts found shows that the people who constructed the Batesville Mounds participated in an exchange network with groups over a wide area. These contacts range from non-local ceramics from Alabama to cherts from the Tennessee and Ohio River Valleys.
Acknowledgements

The Batesville Mounds project, my subsequent thesis, and this article would not have been possible without the generosity of the Panola County Industrial Authority, Warner McBride, Jay Mitchell, and Howard Mize. Mr. Mize deserves a very special thanks for all he has done to see that the Batesville Mounds site is preserved for future generations. I also would like to thank Jay Johnson, Janet Ford, and John Connaway for all of their assistance. Many thanks go to John Nelson, my field assistant. A special thank you goes to Jerry Lilly, my husband, field technician, graphic artist, and editor for this paper.

Mimi Holland-Lilly is a research assistant in the Raleigh, North Carolina office of Garrow and Associates Inc.

References

Brown, Calvin

Ford, James A.

Ford, Janet

Holland, Mimi
1992 Baseline archaeological data recovery at Batesville Mounds site 22PA500 Panola County, Mississippi. Report submitted to the Panola County Industrial Authority of the Second Judicial Court District. Center for Archaelogical Research, University, Mississippi. Contract No. 91-09-044.
1994 Batesville Mounds: A Middle Woodland platform mound and village site. MA thesis, University of Mississippi Department of Sociology and Anthropology.

Jeffries, Richard W.

Johnson, Glenn

Johnson, Jay K.

Knight, Vernon James, Jr.

Mainfort, Robert C. Jr.

Phillips, Phillip

Rafferty, Janet

Squier, Ephraim George and Edwin H. Davis
1848 Ancient monuments of the Mississippi Valley. Smithsonian Contributions to Knowledge 1.

Toth, Edwin Alan
Preliminary Impressions from the Batesville Mounds Group

Janet Ford

Data so far available suggest that the McCarter Mound is coeval with at least a portion of the occupation at the Batesville Mounds group. Proximity suggests that it may indeed be a part of the larger site. Preliminary indications are that these segments of the Batesville site were occupied during the initial interaction among Tchefuncte-early Marksville, and the Lake Cormorant cultures. Ties with groups in the Midwest are also indicated.

Site Description

The Batesville Mounds group (22PA500) is located in Panola County, Mississippi, near the Tallahatchie River two miles to the northeast of the city of Batesville (Figures 1 and 2). The site lies in the Loess Hills, a narrow physiographic province located between the Northern Yazoo Basin area of the Alluvial Valley to the west and the North Central Hills to the east. A full description and maps of the site can be found in the preceding article (see Holland-Lilly 1996).

Initial Investigation of the Site

Although local collectors had periodically visited the site, prior to 1991 no systematic study of the Batesville Mounds group had been conducted. Probably because of the presence of two pyramidal mounds, it was recorded on the state site card as having a Mississippian period component.

In November of 1990, the Panola County Industrial Authority contracted with the Center for Archaeological Research at the University of Mississippi for an archaeological testing program (Holland 1994:1). In the course of this study, conducted primarily in 1991, the site was mapped with a laser transit, gridded, and systematically auger tested (see Holland-Lilly 1996).

The small number of students enrolled that summer in the University of Mississippi archaeological field studies course under my direction also conducted test excavations in North Village and the area of Mound E (see Figure 3). The village area had been almost completely destroyed by the plow, although one subsurface feature and 4,747 artifacts were recovered. The Mound E test produced 972 additional artifacts, but no structural information; profiles in all test units showed a uniform reddish fill. Although 348 auger holes were drilled, only 157 produced material that contributed to the artifact inventory (Holland 1994:15-16).

Initial Findings

When the artifacts recovered in 1991 were analyzed, the assumption of Mississippian occupation had to be abandoned. Not a single artifact
Figure 3. Relative locations of McCarter and Batesville Mounds group features. (Area shown 1 square mile)

dating to that period was found in any area of the site. Instead, ceramics indicated a Late Tchula-Early Marksville association (see Holland-Lilly 1996: Table 1). It became evident that the Batesville Mounds group was yet another site with platform mounds dating to the Woodland.

This realization prompted a reconsideration of the site parameters. Only 150 meters north of the boundary of the land owned by the city there had been another small conical mound, McCarter (Figure 3), which had measured 35 feet in diameter and 53 inches in height. In 1968 it was excavated by a group of amateurs, yielding three burials, two complete vessels and large portions of several others. On the chest of one burial lay a copper-coated panpipe (Johnson 1969:5-6). The pottery that was recovered was revealing. One of the whole vessels was a small, plain red beaker with a flat bottom. The other was a red bowl with Twin Lakes Punctated, var. Hopson decoration. (Figure 4). Large portions of two other red vessels could be classified as Twin Lakes Punctated, var. Twin Lakes

(Figures 5 and 6: for a more complete description of the pottery see Ford 1990). A single radiocarbon sample from Stage 2 of the mound produced a date of 340 A.D. ± 140 (M-2256) (Crane & Griffin 1972:213). Single dates are always risky. Besides the large range of error, the date yielded in this case is almost certainly too late a median date for the pottery and for the panpipe. The McCarter Mound burial, on the basis of ceramics alone, was coeval with the material recovered from the Batesville Mounds group. The proximity of the McCarter Mound the Batesville group and the confirmation of coeval occupation suggest that it was probably a part of the Batesville Mounds complex.

In retrospect, it is hard to see why no one had earlier included it in the site. It is true that it was small and on the property of a different landowner; it is possible that differential land use made it obscure. Perhaps the assumption of a Mississippian date for the platform mounds impeded making the connection, especially after the Woodland affiliation of McCarter was established. With the affirmation of the coeval occupation of the larger mound group, however, McCarter seemed likely to be a part of the site. This became even more likely with subsequent investigation.
Subsequent Investigation

I returned with large field school crews to the Batesville Mounds group in 1993, 1994 and 1995. Excavation concentrated on the South Village. Three 5 x 10 foot test pits were also placed in the summit of Mound B as well as a 5 x 10 foot trench to the east and 5 x 20 foot trench to the west of the center of Mound D. Artifact analysis is not complete; in fact, cataloguing is not yet complete. During excavation and artifact cleaning, however, I established a policy whereby I retrieved all identified diagnostic artifacts for immediate processing. This has allowed me to draw some preliminary conclusions.

While profiles showed no evidence of it, artifacts recovered from the summit of Mound B revealed a good deal of disturbance. One lens from a pair of sunglasses was found twelve inches below the surface. The major focus in testing, the recovery of a radiocarbon sample, was not realized. The test pits in the mound’s summit reached 30 inches in depth. They produced additional Tchula period pottery, including several red Twin Lakes Punctated, var. Twin Lakes rims.

I have earlier defined the Tidwell Complex of the Lake Cormorant culture, which includes McCarter and sites to the east in the North Central Hills. In this complex, Twin Lakes Punctated occurs in context with Cormorant Cord Impressed vessels, confirming a Tchula period date (Ford 1990).

Some structural information about Mound B was discerned. Six-inch soil core samples were taken to a depth of 128 inches below mound surface in each corner of one of the test pits. They showed no evidence of sequential floors; instead, basketloading was indicated. This, of course, does not conform to the general construction sequence of most Mississippian period mounds. Of course, it is always possible that Mound B was constructed of dirt taken from an earlier village, but the dearth of artifacts from potential later platform mound building cultures on the site and the comparative construction and artifact inventory data from other flat-topped Woodland mounds suggest that the pottery recovered from Mound B dates close to the time of the mound’s construction. Jay Johnson will attempt to settle the matter with another attempt to recover datable material in the summer of 1996.

Mound D tests yielded almost no artifacts, much less anything diagnostic. They did, however, produce a good radiocarbon sample from a burned layer covering what is possibly the primary stage of the mound. The sample has not yet been submitted for analysis.

South Village was an area of intense artifact concentration. Hopes were high that intact midden would be found, but the first two seasons were disappointing in this respect. Excavation revealed a disturbed
plowzone measuring approximately six to twelve inches in depth. Abundant artifacts and some subsurface features, however, did remain.

As mentioned above, total pottery counts and final ceramic analysis await completion of cataloguing. Some preliminary conclusions are possible, however, from the immediate processing of diagnostics and the observation of the artifacts as they are processed. While most pottery recovered was plain, diagnostic Tchula period types were recovered in sufficient amounts to indicate an occupation. Cormorant Cord Impressed and Twin Lakes Punctated were present along with the typical red plain ware expected. Surprising in the first two seasons, however, was the dearth of Marksiville types. Only two small sherds were recovered. This was all the more interesting in the light of the lithic inventory.

The Batesville Mounds are located near a deposit of Citronelle gravel. Several Woodland bifaces and fragments of bifaces made of this material were recovered. Also recovered, however, were a number of prismatic blades, most of them made on non-local chert. Mill Creek, Burlington, and Cobden have been identified, all of which testify to connections with Illinois sources. Still other blades are executed on non-local material whose source has not yet been identified. In addition, blade fragments, debitage, and cores indicate that at least some blades were also produced on the local Citronelle gravels. The imported blades, of course, indicated at least material trade interaction with Illinois Hopewell, further testimony to the contemporaneity of McCarter with its panpipe and the rest of the Batesville Mounds group.

The final season of field school work at South Village was even more gratifying. At last an area of undisturbed midden was identified on the extreme northern edge near a steep bluff line along an abandoned river channel; more blades appeared; and finally a decent sample of Marksiville sherds was recovered.

Preliminary Suggested Interpretations

Until all artifacts are analyzed, proportions of categories are meaningless. Some observations can, however, be suggested on the basis of first impressions. Interpretations are offered to structure questions to be answered by full analysis.

The Woodland ware from this region is quite distinct from both the Tchefuncte and Marksiville pottery found in the Alluvial Valley, which is typically soft, sandless, and/or chalky (see appropriate descriptions in Phillips 1970 and Toth 1988). Although the paste/temper varies somewhat, most local Tchula period vessels are sandy, and they can be quite thin and hard. There is a distinctive red cast to most but not all local Tchula period pottery. Sometimes there is a discernible red slip, but even without it many of the vessels are more red or buff than gray.

The Tchula period pottery from the Batesville Mounds group, which is to the east of the Lower Alluvial Valley, is, as noted above, very similar to that even further to the east in the North Central Hills. This pottery also occurs in limited amounts at sites located to the west, in the Northern Yazoo region of the Lower Alluvial Valley. The identification and delineation of a Tchula period complex to the east, in fact, confirms some of the speculations of earlier researchers in the Lower Alluvial Valley. Phillips (1970:77), for example, noted in his description of the Tchula period marker type Cormorant Cord Impressed, *var. Cormorant* that the ware was “sandy textured with a high incidence of reddish tones...not quite typical of any of the varieties of Baytown Plain so far classified.” He also noted:

The kind of cord impression represented by this type suggests a marginal relationship to better known centers of this technique to the north and east.... There are some things about this pottery, in the paste as well as the decoration department, that lead one to suspect it may be intrusive (Phillips 1970:77).

On other issues Phillips also had definite suspicions on origins. He thought that the answer to the general presence of sandy ware, amid the notably soft and sandless plain, fabric marked, and cord marked wares of the Delta, lay in the hills to the east (Phillips 1970:891). These sandy varieties, he found, were dominant only in the Tallahatchie region in the east-central area of the Northern Yazoo Basin. The paste, he opined, probably resulted from the clay that was used: neither sand nor clay was added as temper (Phillips 1970:54). Phillips observed also that his two defined varieties of Twin Lakes Punctated occurred primarily in the same area. With the exception of the Norman site, both Twin Lakes and Crowder seemed to be exclusive to the Tallahatchie drainage. At least Twin Lakes Punctated, *var. Twin Lakes*, he noted, occurred exclusively on sandy-textured paste equivalent to Baytown Plain, *var. Thomas* (Phillips 1970:166).

Toth (1988:232) subsequently reported finding Twin Lakes on Thomas paste, but also occurring on "perfectly good soft chalky early Marksville...[p]articularly in Dorr contexts but also in samples from the Tallahatchie-Coldwater region.” Toth (1988:232) also added a Hopson variety of Twin Lake Punctated which he found excluded exclusively on chalky paste at the Norman site. The complete bowl from McCarter (Figure 4) exhibits the design elements that Toth assigns to his Hopson variety, but it is not on a soft and chalky paste. Toth concluded:

There is no question that something special took place in the interior of the upper Yazoo Basin during the late Tchula or early Marksiville periods...strange cultural mixing, known only from surface collected ceramics,
has been encountered. At Tackett, one must deal with certain ceramics that have no Lower Valley counterparts. Tackett is located a few miles upstream from Norman. The two sites are related closely (Toth 1988:120).

Of course, the distinction noted between the cultures producing the ceramic group that includes Cormorant Cord Impressed and Twin Lake Punctated wares and those producing the more typical wares described by Phillips and Toth is the distinction between Lake Cormorant and Tchefuncte cultures. Lake Cormorant sites in the Alluvial Valley are located primarily to the northeast of the Tchefuncte area. In the region adjacent to the Tallahatchie as it flows from the North Central Hills through the Loess Bluffs and into the Yazoo Basin, Phillips (1970:878-879) recognized Lake Cormorant in the Turkey Ridge Phase. Lake Cormorant, however, also extends into the Upper Sunflower. Phillips (1970:879-880) in his definition of the Norman Phase designated the Norman site as Tchefuncte, believing that Lake Cormorant types like Twin Lakes Punctated dated to early Marksville. Brookes and Taylor (1986:2526) subsequently pointed out that Twin Lakes Punctated and certain others of the presumed early Marksville types did, indeed, appear in the Tchula period and that, if they are included, there is a considerable Lake Cormorant presence at Norman. This accounts for the strange presence noted by Toth in the quote above. Both Phillips (1970:878) and Brookes and Taylor (1986:26) note that some of these Lake Cormorant decorative types do not terminate with the Tchula period, but persist on into Marksville. I believe the significance of this has been underestimated.

Lake Cormorant and Tchefuncte cultures are largely contemporaneous. On the other hand, the panpipe recovered from the McCarter Mound was almost certainly not produced locally. Copper is not available in the region. Seeman (1995:136-7) notes that there are less than 80 panpipes thus far recovered in North America. His map indicates that he is including the McCarter panpipe in this sample. He notes that all of the panpipes date to the same restricted period that terminates with the end of Hopewell interaction. If Toth (1988:52) is correct, panpipes date to about A.D. 100-200. The significance of the co-occurrence of the Lake Cormorant pottery and the panpipe is clear. It suggests that in this area Lake Cormorant culture people were interacting in some fashion with others involved in the general phenomenon which resulted in the spread of ideas and/or actual panpipes.

A panpipe was also found at Helena Crossing (Ford 1963:16), as were blades on material imported from the Midwest region (Ford 1963:44-45). Consensus opinion is that the pottery recovered at that site is predominantly early Marksville (Ford 1963:38; Toth 1988:85), although there is a strong presence of Tchefuncte pottery. Hopewellian contact at Helena Crossing, then, seems to be with people in the late stages of transition from Tchefuncte to Marksville (see Brookes 1988:xi). The original impression that Marksville pottery decoration resulted from the same Hopewelian contact that introduced copper artifacts, pipes, figurines, and exotic lithics to the Southeast has weakened with accumulating data. The information from Batesville reinforces this trend.

Johnson and Hayes (1995:115) have recently pointed out that the trafficking of exotic lithic raw materials and other luxury items dates early in the various periods of interaction. If we assume that the two panpipes and the blades from the Batesville and Helena Crossing sites were traded at roughly the same time level and early in the period of interaction, we are faced with an interesting proposition. It seems possible that Lake Cormorant culture may have outlasted Tchefuncte and overlapped the Tchefuncte-early Marksville transition.

An examination of paste features of both the Lake Cormorant and the Marksville sherds recovered from Batesville is also enlightening. The Lake Cormorant sherds crosscut paste categories. The sand particles included in the paste range from very fine to very coarse. The majority plain wares show the same range. The interesting fact is that the Marksville pottery similarly crosscuts these paste categories. There are a few examples of the soft and chalky paste common to the ware in the Alluvial Valley, but the majority of the Marksville Stamped and Incised has the same range of sandy paste as the Lake Cormorant sherds. Not all of the Marksville sherds, then, are from vessels imported from the Alluvial Valley. The implication seems to be that into the mix of Hopewelian and Lake Cormorant interaction at Batesville we have to add Marksville.

Here I must note that I chose the term “interaction” in the time honored tradition of avoidance of specifics. I use it in its broadest and most vague sense. I do not know exactly what is involved in this interaction—people, ideas, trade of artifacts and/or materials, a mixture of all of these? It is simply obvious that there is some sort of commonality to be expected of complex groups who are not developing in isolation. I have used “Hopewell” in that same broad sense to denote a Midwestern phenomenon that is involved in multiregional interaction. I refer the reader to Seeman (1995) for a thoughtful discussion of both of these concepts.

Pottery from sites further east, up the Tallahatchie and its tributaries, seems to support the intrusion of Marksville design concepts, here often executed in Lake Cormorant fashion. Typical are the sherds from the Clear Creek site of the Tidwell complex (Figure 7). Clear Creek was a mound with a central crypt double burial, perhaps in a log tomb (Thorne and McGaheney 1968:25-26). As noted earlier, similar sherds show up at sites in the Alluvial Valley between the Tallahatchie and the Yazoo, especially in the Dorr phase (see Toth 1970).
In his introduction to Toth's volume, Sam Brookes said of the Dorr phase:

...I feel that the concentration of sites indicates that something special happened in the region during Middle Woodland times. If there was a meeting of Hopewell and Tchula, should we not expect to find an early possibly hybrid variant of the two? I think it exists—We have glimpses of it in the panpipes from the McCarter mound and at Helena Crossing.

"Hybrid" is perhaps a misleading term. It seems evident, however, that multiregional interaction is occurring among Tchula/early Marksville, Lake Cormorant, and Hopewell cultures.

Janet Ford is a professor in the Department of Sociology and Anthropology at the University of Mississippi, Oxford.

References

Brookes, Samuel O.

Brookes, Samuel O., and Cheryl Taylor

Crane, H. R., and James B. Griffin
1972 University of Michigan radiocarbon dates XV. Radiocarbon 14(1).

Ford, James A.

Ford, Janet

Holland, Mimi
1994 Batesville Mounds: A Middle Woodland platform mound and village site. MA Thesis, University of Mississippi Department of Sociology and Anthropology.

Holland-Lilly, Mimi

Johnson, Glen

Johnson, Jay K., and Fair L. Hayes

Phillips, Philip

Seeman, Mark E.

Thorne, Robert M., and Samuel O. McGahey

Toth, Edwin Alan
Book Reviews

Reviewed by Melissa H. Reams

Brian Fagan is probably best known for his archaeological textbooks Archaeology: A Brief Introduction, In the Beginning, and People of the Earth, which are used in introductory archaeology courses at colleges and universities worldwide. He has also published several popular archaeology books, including The Adventure of Archaeology (which this reviewer read in high school as an aspiring archaeologist) and Time Detectives. Snapshots of the Past follows this popular genre, and this review was written with avocational archaeologists' and lay persons' perspectives in mind.

This slim volume is a compendium of twenty-nine short articles, of which all but two were originally published in Archaeology Magazine between 1988 and 1994 in Fagan's "Timeliness" column. Subjects range from a brief description of the Neolithic megalithic passage-grave of Newgrange near Dublin, Ireland and the use of mitochondrial DNA in studying human evolution, to the destructive looting of an important Late Mississippian site in Kentucky (Slack Farm) and the excavations of the buried set of Cecil B. DeMille's 1923 epic film The Ten Commandments. None of the articles are very detailed, but most are entertaining. In fact this book could be equated with an archaeological commentary, but these are not enough to give the reader more than a cursory understanding of the subject at hand (although, as always, Fagan provides a guide to further reading [albeit limited] at the end of the book). In particular, the articles dealing with hominid evolution require the reader to have more than a passing familiarity with the topic. To understand the terminology and appreciate the nuances of Fagan's discussions, one would have to read extensively on the subject, to major in anthropology, or to have paid very close attention in the one introductory anthropology course she may have taken in college.

Also disappointing in this book, since the general public is its target audience, and surprising, considering the visual nature of Archaeology Magazine, is the lack of photographs and illustrations: there are only four black and white photographs in the entire book. Fortunately for this reviewer, one of the photographs is of Newgrange, which I, admittedly, had never heard of before. For comparison, I rummaged around in the back of my office closet at home until I found several old copies of the magazine. In every instance, Fagan's column contained at least one photograph or illustration, usually important to his argument. The photograph of the damaged remnant foundations of Shakespeare's Rose Theater, recently discovered in London during the demolition of a 1957 office building, helped explain Fagan's opinion in "The Rose Affair" that the site simply should have been excavated and photodocumented and did not warrant the costly redesign of a newly proposed office building, complete with a public viewing area, around and above the ruins. I would love to see an illustration or diagram of the camel saddle described in the article "Saddle up the Camels!" that, according to Fagan, so drastically altered the political and economic structure of the Arabian world around 500 B.C.

In this reviewer's opinion, Fagan's better articles in the book are his commentaries on site looting, the archaeologist's responsibility to publish her research, and the archaeological discipline's need to place greater emphasis on ethics, conservation, resource management, and public education to ensure the preservation of our dwindling, nonrenewable database. I would recommend the articles "Archaeology's Dirty Secret" and "The Arrogant Archaeologist" to every student and professional archaeologist.

Overall, Snapshots of the Past is an entertaining volume. However, as virtually every article in the book revolves around recent discoveries, new research techniques, and other news items that, because of their novelty, are subject to change and refinement as more information becomes available, I believe that a magazine column (and not something with the perceived authoritativeness of a book) is a better forum for the dissemination of this type of information and commentary. Any interested person would do better to subscribe to an archaeological journal or magazine than to purchase this book.

Melissa H. Reams is an archaeologist for the U.S. Forest Service stationed on the Chickasawhay Ranger District in Laurel, Mississippi.

Reviewed by Samuel O. Brookes

David Hurst Thomas is a well known and highly respected archaeologist. With this volume he has pieced together a very nice overview of North American prehistory. The purpose of this tome is severalfold. Dr. Thomas sets out to tell us of the prehistory of North America. He also introduces the reader to the Native Americans who are still with us, the folks whose ancestors discovered this continent and who created these sites discussed in the text. Dr. Thomas’ treatment of these people and their views is one of the highlights of the book. The emotionally charged issues that are currently being debated in archaeology are tastefully dealt with here and the recurring theme is one of respect: for people, their culture, and the archaeological and historical sites they left behind.

Dr. Thomas comes down hard on pothunters, and this provides both Native Americans and archaeologists with a common enemy. Going beyond this, Thomas provides them with a common goal, namely that of preservation of sites and understanding different cultures. Thomas also demonstrates how the sites will be one of the only ways we will ever be able to understand the past. Finally, he presents us with an itinerary for travel to archaeological sites and museums across America.

Dr. Thomas is eminently qualified to discuss the archaeology of North America, having conducted research over a large area and published voluminously, and I feel he does an excellent job. However in one instance he does, in my opinion, gloss over one of the more interesting events in North American prehistory, the Rancholabrean extinction. In discussing this issue Hurst describes the now discredited Paleo Indian overkill hypothesis and goes on to explain the current theory that climatic conditions were responsible. In truth the causes for the extinctions are a mystery. Hurst seems to suggest that herbivores died off and this in turn caused the demise of certain types of carnivores, but there appear to be differences in time in these extinctions, and neither argument, overkill or climate, explains why some species went extinct and others did not. Why did the giant beaver *Castoroides* die off but not the modern species *Castor*? The answer is simply that the extinctions of the Pleistocene are one of the great mysteries of our time, and that is why archaeology is so much fun! I wish Dr. Thomas had handled this issue in a different manner because I think this is a wonderful, exciting topic and would have made his book even more interesting. I would have included more on the Southeastern Archaic, but then most reviewers are harder on authors’ treatment of their own areas of interest. All in all I cannot complain about the quality of work Thomas has put into this volume. There are a couple of things that I do not like and I feel I should mention these.

One is his use of sidebars. These are literary devices that offer more specific information on a particular subject, but for me they are interruptions to my train of thought. I realize that I have a limited train of thought to begin with, but textual interruptions I can do without. For instance, as one reads down page 57 about life in the California Archaic, one turns the page to find the sidebar “When Did the Bow and Arrow Arrive in America?” The sidebar covers all of pages 58 and 59 and the top portion of page 60. Now that is interesting stuff! There is a great map showing the chronological spread of the bow and arrow across North America. I started reading and was hooked. Taking a closer look at the map, I agreed with the dates for the Lower Mississippi Valley, ca. A.D. 800. This ties right in with the Peabody phase that I have an interest in, and it is always nice to see that other people agree with your findings. Then I noticed the map was taken from an article by John Blitz! We all know him, a frequent contributor to *Mississippi Archaeology*. I then turned to the bibliography to see what article it was taken from, and to my surprise there is no bibliography as such. Thomas lists books under two headings, “For the General Reader” and “More Specialized Sources.” There is no general bibliography and Blitz does not appear other than as draftsman of that lovely map. I don’t like that at all. Finally I did happen to look at the “Notes” section and behold there was the Blitz reference. Well, I would just prefer to have everything like this in one neat little bibliography. If Dr. Thomas then wants to add a section of recommended readings, fine. The point is, I have a limited attention span and went off on a tangent to find a reference. Now what were we talking about? The California Archaic? Blitz never worked in California! Oh well, you see what I mean? The sidebars, while informative, can ruin your train of thought.

There are some other minor problems with the book. On page 182, the Chickasaw Village is listed as being on the Natchez Trace Parkway, but in MJI not MS! Another error occurs on page 245. The famous cedar mask with carved wooden antlers and inlaid shell found at the Spiro site in Oklahoma is listed as being from Key Marco in Florida. On page 291 the caption reads “Incised vessels and human effigies recovered from the Menard site…” Most of the vessels shown are either painted, or incised and punctuated. While this may sound picky, one would expect a scholar of Dr. Thomas’ caliber to get it right.

The major problem with the book comes with the Appendix: “Major Sites, Museums and Programs that Feature Native American History and Archaeology.” On the 14th color plate (these are unnumbered)
is an absolutely gorgeous color photograph of Emerald Mound. Emerald is not mentioned in the text, nor does it appear in the major sites section. In fact the only entries under major sites and museums for Mississippi are Chickasaw Village Site (this time it is listed as being in Mississippi), the Choctaw Museum of the Southern Indian, Grand Village of the Natchez Indians, Nanih Waiya Historical Site, and Winterville Mounds Park and Museum. So where are the Bear Creek Mounds, Pharr Mounds, Owl Creek Mounds, Bynum Mounds, Boyd Mound, the Mangum site, and the Emerald Mound as one goes south down the Trace? That's a bunch of important sites to miss. The Pocahontas Mound and Brogan Mound are along major highways, yet they also are not mentioned. The Old Capitol Museum and Cottonlandia Museum need to be included. So too does the Archaeology Museum at the Carnegie Public Library in Clarksdale. I think the MAA needs to compile a list of these sites and send them to Dr. Thomas for his second edition of this book. Under Louisiana I note that he did not include the famous Marksveville Archaeological Park and Museum, now the Tunica-Biloxi tribal museum, home of the Tunica Treasure. In fact the Poverty Point site is the only entry for that entire state. I like this book, I really do, but it needs to be reworked in a second edition. The prehistory and general information presented are great but there is also a lot missing. I would have a hard time recommending that anyone spend $25 for it as it stands now.

Samuel O. Brookes is an archaeologist with the U.S. Forest Service, Jackson, Mississippi.

Reviewed by Edmond Boudreaux, Jr.

Anyone who is interested in Florida's prehistory will find Barbara Purdy's summary of this subject that serves as a basis for this book very informative. The general public, students, and amateur and avocational archaeologists will also find How to do Archaeology the Right Way beneficial and educational for its general presentation of archaeological method.

The first chapter is dedicated to the artifacts and the lifestyles of the people who made them. Here, Purdy presents a detailed discussion of the richness of Florida's cultural heritage. She weaves the archaeological story of Florida's ancient inhabitants into an easy to understand chronicle of native periods. Using artifacts from various sites to tell the story, Purdy defines, explains, and analyzes the Paleoindian, Archaic, Ceramic, and Historic periods in straightforward nontechnical language.

Chapters two through six, in the same nontechnical vein, takes the reader on a trip that explains the hows and whys of archaeology. Purdy asks the fundamental question that is asked by the public, "how did you know to dig there?" She uses a logical format to create an understanding of the principles of archaeology and in doing so, provides the reader with the answers.

Chapter two, "Survey and Excavation," also is an example of this. Purdy lays out the groundwork by defining archaeological terms while describing methods in this case: 1) how survey methods are used to assess the situation and determine the location of archaeological remains; 2) the importance of using maps and how various maps can be used; 3) what remote sensing is and how it can be used as a tool; and 4) the use of sampling techniques prior to excavations. Then the actual excavation is described, including field methods, equipment, labeling, containers, screening, sorting, features, stratigraphy, and samples.

I must commend Barbara Purdy for this excellent explanation of how to do archaeology the right way. She has aimed this book at a nonacademic audience, which should find it educational, interesting, and useful.

Edmond Boudreaux, Jr. of Biloxi is a service technician for BellSouth who serves as president of the Mississippi Archaeological Association Gulf Coast Chapter and was the 1995 statewide MAA president.

Reviewed by Jo Miles-Seely

Recently, the trend in historical scholarship has been to attempt a more balanced history and focus on perspectives that have been ignored in the past. Author Mary Ann Wells follows this trend in the book Native Land, which was written at the request of the Mississippi Department of Archives and History's Columbus Quincentenary Committee. The subject is the period of Mississippi's history from first contact between Natives and Europeans through the colonial period, 1540-1798. Her mission was "...to translate the historical records—primary documents such as
reports, correspondence and journals—into an accessible form for general readers” (p. xi). She succeeds in her mission.

In the Introduction Wells explains that her “...mixed Choctaw and European heritage has given [her] a special insight into the diversity of our past and the complex events that transpired in the region” (p. x). She goes on to say that she is “...by tradition a storyteller, by training a journalist” (p. xi). Not surprisingly, she writes the history as a story. In order not to interrupt the flow of the story, source notes are relegated to the back of the book, organized by chapter. This method tends to obscure what sources were used when, but the notes do acknowledge the source for direct quotes. In addition to sources for the primary documents, a bibliography includes contemporary publications.

This book is not just another rehash of history; several factors make it unique. Writing history for the general reader has been done before, but the storytelling presentation makes Native Land interesting and easy to read. Also, it fills a gap by focusing on Mississippi’s protohistoric and colonial history. What makes this book most unique is the Choctaw perspective that Wells brings to the story.

The storytelling presentation is most successful in the early chapters. The story starts with the Choctaw creation legend as told to Wells by her uncle, John Dee Dye. Into this scenario she introduces the Spanish conquistadors. As is appropriate for a discussion of Mississippi history, she devotes a number of pages to Hernando de Soto and his expedition. Readers who believe in the romantic presentation of Soto as a courageous adventurer will be disappointed; Wells exposes him as a thief and extortionist.

It is also in the early chapters where the flaws are most visible. As is often the case when a book is written about a complex subject for a general audience, generalizations are made. Native Land suffers from this tendency to generalize and simplify, and nowhere is this more apparent than in Chapter 4. In this chapter Wells discusses the little known protohistoric period: the over 140-year gap in written records between the Soto expedition and the first documented Frenchmen to visit the area. On page 29 she states, “the culture [Mississippian] spread throughout most of the Southeast, unifying people in outlooks and concepts because it offered a better way of life.” The Mississippian lifestyle, particularly corn agriculture, had its own set of physical and environmental stresses. It may or may not have been a better way of life. Many scholars believe it was in decline prior to European contact. Also in this chapter Wells relates that after the Soto expedition, “epidemics ravaged the people, and in some cases devoured whole nations...” (p.28). This statement simplifies but obscures the situation. Certainly some groups were decimated, but others, possibly the Natchez, seemed to have survived the effects of European disease with minimal disruption.

Once the chronology moves to the French, and the amount of primary source material increases, the story becomes more of the typical relating of facts, although it never loses the Native American or Mississippi focus. She discusses the early exploration and Native American contact of Marquette and Jolliet, and La Salle and his lieutenant Tonti; European competition for the area; the exploration, settlement efforts, and governance of Iberville and his brother Bienville; the English/Chickasaw alliance and the antagonism it caused; the missionaries and their effects; the failed enterprises of Crozat and John Law; the importation and use of African slaves; the Natchez uprising and its repercussions; the Chickasaw Wars; the Chocowar Civil War; the effects of the French and Indian War; Spanish takeover of the area; and finally the beginning of the American period. Through it all Wells primarily focuses on the interaction between European and Native American groups, often offering explanations for why the differences in Indian and European ideals led to misunderstanding and conflict. Her sympathies are definitely with the Native groups.

Despite the author’s tendency to simplify some issues, this is a well-written book. Chapters are short and readable, most with descriptive titles. Wells fulfills her mission and fills a gap by writing, for the general reader, a history about the protohistoric and colonial periods with a distinct Mississippi point of view. Perhaps appropriately, it is also a Choctaw point of view.

Jo Miles-Seely is registrar at the Old Capitol Museum of Mississippi History, Jackson, Mississippi.

Reviewed by Kenneth H. Carleton

Originally published in 1895, this work is a true classic and is still considered essential reading for any student of the Creek War and the War of 1812. Halbert and Ball set out “to give as accurate an account as
can now [1895] be obtained from written and printed records, from tradition and from personal observation” of the Creek War (Introduction, line 1). This volume is an accumulation of the authors’ decades of research into the local history of southwestern Alabama and particularly Halbert’s research on the Choctaw and Creek Indians.

Henry S. Halbert is one of the great unknown anthropologist/historians of Mississippi and Alabama in the late nineteenth and early twentieth centuries. Born in 1837 in Alabama, he grew up in Lowndes County, Mississippi. Halbert received an especially good education for someone who was not a wealthy planter’s son. After serving on the western frontier in some of the early Indian campaigns and in the Civil War, he became a teacher. Halbert was the first teacher at the Catholic mission to the Choctaws in Tucker, Neshoba County, in 1884/5, and from 1888 to 1899 he served as the superintendent of the Mississippi State Choctaw School System. He spoke fluent Choctaw and spent a great deal of time in the 1880s and 1890s collecting oral history and recording traditional Choctaw culture from the elders of the Choctaws in Mississippi. He was one of the principal founders of the Mississippi Historical Society as well as a frequent early contributor to its publications. He was also an active and contributing member of the Alabama Historical Society and spent the last fifteen years of his life working for the Alabama Department of Archives and History in Montgomery. Halbert had numerous articles published in journals like *American Antiquarian, American Anthropologist, Publications of the Mississippi Historical Society,* and *Transactions of the Alabama Historical Society,* he also co-edited, with John R. Swanton, of the *Bulletin 46* of the Bureau of American Ethnology, which is Cyrus Byington’s Choctaw dictionary.

Timothy H. Ball was born in 1826 in Massachusetts to a wealthy New England family. He received an excellent education and became a Baptist preacher, which eventually took him to Clarke County, Alabama in the early 1850s. He had as much interest in local history as Halbert and spent much time interviewing the older residents of the area, carefully recording their memories. He eventually published a history of Clarke County, Alabama, and from his research probably got a significant portion of the material he provided for the Creek War. He was a prolific and diverse writer, with over 14 books published.

The Creek War concentrates on the causes and early portions of the war, paying particular attention to the Creeks and their complaints against the American settlers in southwestern Alabama which led up to the war. The authors state in their introduction that they intended to take an unbiased look at the causes and events of the war, detailing the atrocities perpetrated by both the Indian and White participants equally. In this they succeeded quite well, equally damning both sides for the several massacres which occurred. The authors were both obviously sympathetic to the Creeks and their situation which resulted in this war. They make it abundantly clear that while the Creeks may have been saying they were going to attack the Americans and were even preparing for war and soliciting aid from the English and Spanish enemies of the Americans, it was in fact the Americans who started the war by attacking a large party of Creek warriors in the battle of Burnt Corn before any official declaration of war occurred. The authors also make it clear that they believed that the 1813 massacre of Fort Mims, in which over 500 American men, women, and children were killed, the event which catalyzed the American government to respond with such overwhelming force that the Creeks truly never had a chance of winning this war—that event was a direct result of the supposedly preemptive strike by the Americans at the Battle of Burnt Corn.

Throughout this volume, Halbert and Ball attempt to correct the many errors which had been published by earlier nineteenth-century historians about the events which occurred in this war. They take great pains in this, giving statements published earlier and presenting their evidence refuting such statements. They detail the facts they uncovered by talking to actual participants or the friends and family of such participants, White, Choctaw, and Creek; evidence from historical documents they found; and evidence from what they call “personal observation,” which usually means a personal inspection of the specific location in which an event occurred. This is one of the aspects of this book which I find very interesting and instructive, since the authors have made most of their research methods largely transparent. They do not simply write a story, saying this event occurred on this date and in this place; they attempt to make very explicit where each piece of information comes from and critically evaluate the reliability of such information. They do not simply accept any source, even if it initially appears to be a good one, without first showing why they should accept it. In this way they have corrected a great deal of misinformation in a number of otherwise well-respected and often used sources (including Claiborne’s *Mississippi as a Province, Territory and State* and Pickett’s *History of Alabama*). Through their masterful use of oral tradition Halbert and Ball have added significantly to the overall information about this critical time in our history from sources which are simply not available to us today because their informants all died over 100 years ago.

The Creek War still holds up very well after 100 years, even by most modern standards of scholarship. It is a fascinating look at a pivotal
point in the history of the Mississippi Territory. Despite the fact that this is a late nineteenth-century work, it is quite readable with relatively clear use of language. It is well worth reading and I recommend it to anyone who is interested in the early nineteenth-century history of our area.

Kenneth H. Carleton is tribal archaeologist for the Mississippi Band of Choctaw Indians, Philadelphia, MS.

Reviewed by John H. Blitz

Recently, the steady trickle of books on Mississippian archaeology has surged into what must amount to a torrent in the small world of archaeological publishing. One reason for this is that the information from all those large-scale, Federally-funded excavations of the last 15 years have now been synthesized from contract reports, distilled through dissertations, and made accessible. Cahokia’s Countryside is one such book, the most recent product of the massive research program in and around the American Bottom in Illinois, and the result of Mehrer’s dissertation at the University of Illinois.

Mehrer’s book largely complements, rather than duplicates, the recent Cahokia book by Timothy Pauketat (The Ascent of Chiefs, University of Alabama Press, 1994). The two books are very different. While Pauketat is concerned with the political machinations of Cahokia’s emergent elite, Mehrer turns his attention to the humble households of the rural populace. Rarely do archaeologists have this quantity and quality of information available from a single region. Mehrer presents a detailed compendium of house and feature descriptions that occasionally becomes tedious. However, Mehrer’s book is sure to incite comment and controversy among students of Eastern Woodlands prehistory.

Mehrer’s theoretical focus is the household as a fundamental social and economic unit. He asks how the changes in household sizes, associations, and spatial arrangements observed by archaeologists reflect organizational responses by families to the development of prehistoric complex society. Mehrer has the requisite data base for such an ambitious undertaking: a phase-by-phase sample of numerous excavated dwellings uncovered in the FAI-270 Archaeological Mitigation Project. Many of the raw data have already been published, but Mehrer synthe-

sizes many contract reports to provide a detailed picture of the rural Mississippian settlement pattern. He presents community and household plans, features, and associated artifacts for each phase and he gives the reader a sense of how households responded through time.

The chronological trends in settlement patterns in the region begin with small, nucleated, Late Woodland communities. Settlements grew in size and were transformed in Emergent Mississippian times, around A.D. 800, into a simple hierarchy of large villages and small, multi-family hamlets. With the establishment of Cahokia and a rapidly-evolving Mississippian society about A.D. 1000, a basic settlement dichotomy appeared: the nucleated populations of several temple-town mound centers and the dispersed populations of rural homesteads. The large, non-mound villages of Emergent Mississippian times disappeared. Filling the void between mound center and rural household was a new settlement category, the rural nodal household.

Mehrer is concerned with understanding the political relationship between Cahokia’s elite leadership and the dispersed rural population, and the concept of a rural nodal household is central to his interpretation. Although Mehrer was not the first to recognize nodal households, he codifies and documents the concept. According to Mehrer, nodal households provided integrative and communal services to rural dispersed households. Nodal households are larger, contain more features, have greater storage pit capacities, and reveal greater concentrations of exotic materials than do other rural homesteads. Mehrer interprets nodal households as the residences of locally-influential families, places that served as meeting houses, ritual sweatlodges, and cemeteries. Nodal households had resident, part-time religious specialists but otherwise produced their own food and did not exercise control over the subsistence activities of their neighbors. Indeed, private household storage capacity increases over that found in earlier Emergent Mississippian households. Mehrer recognizes that food surpluses flowed from rural households to mound centers but, in what will be a controversial interpretation, he argues that the rural population was largely independent, both economically and politically, from Cahokia’s ruling elites. In his view, rural folk were free to gain prestige and accumulate wealth through local activities of no direct interest to the mound center elites.

Here is where the Cahokian dirt hits the theoretical fan. Mehrer’s “autonomous countryside” interpretation will be directly challenged by a “command and control” interpretation from those who detect the pervasive control of Cahokia’s elite extending right down to the rural household. In a recent dissertation, Thomas Emerson considers nodal sites to be control points imposed by Cahokia’s rulers for the purpose of dominating, organizing, and appropriating food by coercive means from
a subordinate countryside. So we have two interpretations, polar opposites of each other, drawn from the exact same data base, and presented by seasoned veterans of Cahokian archaeology. Of course, this impending collision stems from the very nature of sociopolitical inferences derived from archaeological data, which often permit multiple perspectives on the same phenomenon. Our discipline generates and requires multiple interpretive frameworks. Stay tuned into the debate, however, because one of these interpretations is in error.

John H. Blitz is visiting assistant professor of anthropology at Bowdoin College, Brunswick, Maine.

Reviewed by Timothy R. Pauketat

As the Great Plains of North America evoke images of open spaces, wind, and living close to the land, many ecologically minded archaeologists would insist that understanding native Plains cultures does not entail getting beyond subsistence. Plains peoples adapted to Plains landscapes, they'd say, despite contemporary ethnographers' and ethnohistorians' assertions that removing those Plains natives from the Plains would not significantly alter Plains cultures. "Postprocessual" archaeologists, like these other anthropologists, also question the primacy of environmental contingencies over other cultural (which is to say ideational) factors.

This is no trivial debate, and certainly not one that southeastern archaeologists can ignore. It also is not a debate that will be resolved by philosophical pontification, regurgitating the ideas of the ages. Archaeology can provide new empirical ground on which to assess these philosophical issues. In the present case, the contested ground is the Plains, an area that might otherwise be considered as Environmental Determinist Territory. Yet in Philip Duke and Michael Wilson's introduction and in Alice Kehoe's animated preamble, Plains archaeology is described as a theoretical backwater, resisting the scientism of the 1960s and 1970s. No thank you, a culture-historical paradigm seemed just fine. In fact, as evidenced by Kehoe's and Patricia O'Brien's chapters, Plains postprocessualism might be considered a continuation of an older historical particularism mixed with some processualism or ecological anthropology, much like what I have noted for the Southeast (Barker and Pauketat, Lords of the Southeast, 1992-3).

Alice Kehoe's romp through recent history sets the tone for the volume by relating CRM and NSF archaeology to academic and theoretical trends. She and others note, quite correctly, that a postprocessual problem orientation makes Plains archaeology more interesting than an older processual one (that relegated Plains people to low-order adaptations). This is a central contribution of the volume, best exemplified by O'Brien's delineation of a "homestead neighborhood" type. Mary Whelan's discussion of an engendered Plains archaeology, David Benn's emphasis on social labor as the key factor in Mississippian transformations, and Richard Krause's contextualization of Plains mounds as local phenomena.

O'Brien transforms the ideas of Julian Steward into what is for all intents and purposes a non-ecological (and to some this means a postprocessual) approach. This might seem an unlikely metamorphosis, but O'Brien emerges with various blends of social, political, religious, and ecological determinants that better encapsulate diverse historical (she would say "evolutionary") trajectories. With the aid of some analogies, she sees Steed-Kisker as a unique kind of "homestead neighborhood" derived in part from the historical development of Cahokia.

While Whelan's review is muddled by an almost functionalist conception of "gender systems," the principal point that art, mortuary patterns, and living residues harbor information about gender is intended to redress confusion in archaeology. Identifying gender (much like any good processualist would) in the past is not the same as "engendered" theory. I find that this distinction is missed by many who would call themselves "feminist" archaeologists, but who are actually doing little besides (1) reifying the past existence of men and women or (2) asserting that all contemporary theory (especially political theory) is inappropriate because our applications are biased by the Western experience. We must reject the former as silly and the latter as nihilistic.

Gender undoubtedly was part of the social dynamic of Mississippian developments in the Southeast, discussed by Benn. Benn locates change in the corporate-kin structures of Plains and southeastern agricultural landscapes. He is certainly right to conclude that "maize production became a vehicle for an emerging elite to attract and hold the allegiance of people," but it seems to me that he builds on, and does not abandon as he thinks, the ideas of David Braun, Dick Ford, and Bruce Smith. These researchers and others have recognized that growing and consuming crops was part and parcel of social networks with their own labor and gender implications. I see no logical incongruity between a coevolution-
ary model of plant-human interaction and a “dialectical” view in which social production and exchange created value(s).

In a similar historical-materialist vein, Krause provides a convincing argument that mound building along the Republican River is poorly conceptualized as an effect of diffusion from the east. The mounds in question, built over a period of centuries, were active material statements about local group identity and labor, an “inseparable part of social reality,” inspired by eastern developments but “recast” according to Plains rules. Mounds were, in certain respects, process not simply an effect of some other unseen process.

Seeing material culture and human agency as process rather than consequence is a central tenet of postprocessual approaches, especially of the Hodderian variety. It is a point reiterated by James Brooks and Michael Wilson, who in separate chapters also continue in a vein similar to Benn and Krause. Unlike most papers in the volume, though, Brooks uses an ethnohistorical approach to ask that factionalism accounted for the Hidatsa/Crow fission and migration. He presents an interesting story laced with anecdotal archaeological data. But this scenario is difficult to evaluate and relies more than most archaeologists would like on “the individuals who actively engaged in the creation of that history.” Its implications do not go much beyond the northern Plains.

Wilson examines the stone circles or tipi rings of the Plains. These have often been dismissed as unworthy of archaeological attention due to their low material density (and hence lack of behavioral data). Wilson asks about the meanings of circles and circle aggregations (but does not abandon the behavioral information from microdebitage on the floors). The question about what tipi rings mean, by itself, may seem trivial. But if one assumes as does Wilson that these are mobile landscapes embued with meaning, then the spatial analysis of a nomadic “adaptation” is necessarily also a postprocessual archaeology of meaning. His use of a Tibetan analogy, while not a “test” of a “theoretical framework” (such things cannot be directly tested), nonetheless corroborates his recognition of the importance of “portable landscapes.”

Neil Mirau makes some of the same points as Wilson but, like Brooks, these will appeal mostly to researchers of the northwestern Plains. Medicine wheels were religious sites, territorial markers, and memorial to individuals, among other things. He does remind us that archaeologists should avoid grafting a popular stereotype of native Americans as “highly spiritual individuals” onto all native Americans. This cautionary note is carried further by Larry Zimmerman, who attempts to reconcile the views of archaeologists and native Plains people. Here we walk the line between understanding the construction of meaning in contemporary contexts on the one hand and accepting the politically correct cop-

out on the other. Zimmerman maintains that the archaeological version of the past is legitimate, but insists that archaeologists maintain open minds about the legitimacy of oral history and non-archaeological accounts. In Zimmerman’s chapter lies a conundrum, not an easy solution: “Acceptance of the past as archaeologists construct it would actually destroy the present for Indians.” Identity is dependent on myth and commonsense knowledge; to despoil them is to dominate them.

I do not think that Zimmerman means that we need to attain an emic perspective on native myth or culture, although this does seem implicit in the chapter by Miranda Warburton and Philip Duke. Warburton and Duke’s review of historical accounts and ethnography demonstrates that arrowheads were central symbols of native Plains groups. This is fine, but they seek to accomplish little more than opening a “dialogue” about symbols and interpretation, seeing little need for “testability.” They seem to have few qualms about driving the herd over the precipice of relativist interpretation, figuratively speaking.

Monica Bargielski Weimer’s contribution, on the other hand, is an interesting critique of predictive models that ignore all but environmental factors in site location. She reviews one case in which environmental factors fail to explain any more of the variation than would be explained by simply guessing where sites would be. This leads Weimer to the point that should be taken to heart by all in CRM positions: we should not overallocate resources to the development of predictive models/GIS at the expense of maintaining libraries, reading, and doing literature reviews. Archaeology is still, after all, largely about understanding culture history, and that understanding isn’t produced by a GIS model. What’s more, Weimer states, the lay public is fascinated with knowing how the past happened, not simply with knowing some abstract principle about why it happened.

In this conclusion, Weimer hits a key issue of the postprocessual critique that requires some elaboration. Pseudo-scientists find comfort in reducing complex historical developments to simple (these days, often neo-Darwinian) equations. My own work has been criticized for being overly concerned with “how” change occurred in the past (see C. Boyd’s review comments in Southeastern Archaeology 14, p. 202 or G. Milner’s lamentations in “The Muddled Mississippian” at the 1996 SAA meeting). Their insistence on only ultimate or “why” explanations (as opposed to proximate or “how” explanations) is ahistorical and, I think, a big mistake. Political dynamics, social negotiation, household decision making, and even stochastic environmental factors produce long-term outcomes that are neither anticipated, uniform, nor reducible to linear causal explanations. In long-term developments, explaining why change occurred is contingent on knowing the history of how various factors combined to
produce change. Stephen Jay Gould has noted that Darwin himself was largely concerned with proximate explanations and historical processes. Any ultimate explanation not based on an understanding of historical processes is likely to be reductionist if not trivial. Such reductionist explanations lead not to a better processualism but to dogma. Hence, the post-processual critique as represented by contributors to Beyond Subsistence could be the salvation of processualism or, better, of just plain old archaeology.

Even Ian Hodder concedes in the final chapter that there is no post-processual archaeology any more. It has become one with contemporary archaeology, not that authors in this book are preoccupied with redefining contemporary archaeology. This is not a polemical book railing about what should be. Rather, it is an eclectic collection of pragmatic studies by working archaeologists concerned with reasonable inferences. Some chapters are more reasonable than others. At its worst, the book dwells on a relativist bewonderment over symbols and meaning. The indisputable fact is that items have unique symbolic meanings. Of course! But archaeologists needn’t (and probably can’t) interpret meanings with precision. Nor could the people of the past. This is precisely why symbolic meanings changed through time, especially within fields of political discourse. There was no one meaning per symbol nor was there one culture per population. Culture (or a cultural adaptation) was not monolithic and static but multifaceted, malleable, and negotiated. A multifaceted and malleable culture concept runs counter to politically correct assumptions about the purity of non-Western cultures and to the cultural-materialist assumptions of political and social homogeneity within populations. Both are reductionist.

At its best, the book recognizes that changes in group interests, values, social organization, economy, or polity are matters of long-term cultural-historical development. Understanding both how and why change occurred derives from approximating what happened when and for what reason at household, community, and regional scales. In the Southeast, such understanding will result from studies of the mnemonic qualities of landscapes, the creation of value and meaning through the acts of production and construction, and the transformation of gender, polity, and ethnicity through the emanations and emulations of pan-regional cultural phenomena.

As the commentaries by Melissa Connor and Hodder conclude, there is no unified rejection here of a problem-oriented and evaluative approach to understanding. Most of these authors probably would agree that ideas need to be weighed against some independent standard. Hence, most of these chapters would still fall within what may be called science, albeit broadly conceived. Getting beyond subsistence in this sense subsumes processual studies.

Getting beyond subsistence should not be about rejecting the discipline of archaeology for alternative “archaeologies” (an earlier iteration of Hodder). It should not be about rejecting the study of diachronic processes, but should be about reclaiming a traditional American archaeology that recognizes causality to be a complex and historically contingent web. Getting beyond subsistence is as American as baseball and apple pie or, better, as bison bones and medicine wheels. We all need to get Beyond Subsistence.

Timothy R. Pauketat is a professor of anthropology at the State University of New York, Buffalo.

Reviewed by Gregory A. Waselkov

During the decade-long genesis of this volume, many of us actively researching that liminal period known as the Protohistoric have been alternately encouraged and prodded by Patricia Galloway to shed a bit more light on the many questions concerning Choctaw origins that she considers here. As she mentions near the end of this very fine book, though the puzzle is not yet solved, the solution may be attained sooner “if other investigators are invited to consult on the case.” The arguments she develops—many of them provocative and some controversial—will undoubtedly act as a catalyst to involve others in the study of this fascinating era.

Everyone interested in the early history of the region bounded roughly by the Mississippi, Tennessee, and Chattahoochee rivers and the Gulf of Mexico (in other words, modern-day Mississippi and Alabama) will find much to ponder in this volume. In fact, upon completing a first read through of the book, I am principally struck by the depth and originality of Galloway’s thought on so many issues. Far from being a synthesis of previous work by others, *Choctaw Genesis* is an important statement of personal and collective understanding to this point. The volume will also serve as a methodological example of source analysis, still an innovative concept in studies of the Protohistoric. Instead of extracting a relevant quote here or a crucial map location there to build an argument, oblivious to the historical motivations that underlay each source’s crea-
tion, every major document and map is critiqued and a judgment made on its reliability. Some readers may be startled by the author's first-person narrative style and lack of footnotes, but her discursive interpretations leave no doubt about the limitations inherent in the too few historical sources from the period.

Galloway begins with a review of late prehistory, particularly the Plaquemine and Mississippian cultures, as reconstructed through archaeological investigations. The tribal "Burial Urn" cultures that succeeded some of the Mississippians, and which evidently gave rise to many of the Choctaws, receive particular attention. Her discussion highlights the desirability of more modern excavations on Alabama River/Moundville IV Phase sites, many of which have been seriously damaged by looters intent on retrieving large intact pots. (As an aside, some of the collections made by members of the Alabama Anthropological Society digging at Montgomery-area Alabama River Phase sites in the early part of this century, and now curated by the Alabama Department of Archives and History, do retain useful provenience data.) Recent and on-going research on the Pearl River and at the Bottle Creek site promises to clarify the nature of other societies contributory to the Choctaws.

The central segment of the book examines the documentary literature provided by Europeans, sometimes as first-hand accounts, but surprisingly often as reworked secondary impressions or imaginings. The Soto chronicles receive exceptional scrutiny, providing a taste of the full-course treatment promised in the forthcoming volume, Historiography of the Hernando de Soto Expedition, which Galloway is editing. But, to my mind, her most impressive accomplishment in this source analysis section of the book is the critical survey of regional cartography, a methodological tour-de-force that offers for comparison the unpublished manuscript drafts of famous maps by Ortelius, Franquelin, Coronelli, and the Delises alongside the printed versions. Students of history and archaeology would both profit from a close study of this chapter.

The next two chapters consider a variety of material and documentary kinds of evidence for ethnic unity and diversity within the Choctaw confederacy as it existed by 1700. Even considering the limits imposed by the few available artifact samples—principally, ceramics—Galloway does manage to construct a plausible, and testable model of intra-Choctaw ethnicity. Although additional documentary sources may be found, the disappointingly small artifactual database available to Galloway should convince us all that much more can be done by applying archaeological methods of site discovery, excavation, and analysis to augment this database manifold. For instance, recent excavations at the Old Spanish Fort site in Pascagoula have recovered a mid-eighteenth-century ce-

...
Published semiannually by the
Mississippi Department of Archives and History
In cooperation with the
Mississippi Archaeological Association

EDITOR
Patricia Galloway, Department of Archives and History

EDITORIAL BOARD
Jay K. Johnson, University of Mississippi
Tristram R. Kidder, Tulane University
George Sabo, University of Arkansas
Susan Scott, Hattiesburg, Mississippi
Gregory Waselkov, University of South Alabama

MISSISSIPPI ARCHAEOLOGY
Volume 31 Winter 1996 Number 2

CONTENTS

European Contact, Burial Behavior, Health, and Diet: A Case Study from Starkville, Mississippi
S. Homes Hogue, Suzanne Buskin, and Heather Rushing

Archaeological Reconnaissance: Survey of Remnant Braided Stream Surfaces in the Western Central Yazoo Basin, Mississippi
John Connaway and Sam McGahey

Changes in Mobility Patterns in South Mississippi from the Late Archaic Period to Late Gulf Formational Stage: An Example from Forrest County, Mississippi
Todd McMakin

Review: Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley
Tristram Kidder

Review: Lost Cities of the Ancient Southeast
Penelope B. Drooker

Review: Archaeology of the Southeastern United States: Paleoindian to World War I
Marvin D. Jeter

COBB INSTITUTE OF ARCHAEOLOGY
P. O. DRAWER AR
MISSISSIPPI STATE UNIVERSITY